导航:首页 > 文档加密 > idea公共密钥加密系统

idea公共密钥加密系统

发布时间:2024-04-05 05:05:47

❶ 谁会用IDEA加密解密邮件教教我!

IDEA加密标准由PGP(Pretty Good Privacy)系统使用。公共密钥加密使用两个不同的密钥, 因此是一种不对称的加密系统。它的一个密钥是公开的, 而系统的基本功能也是有公共密钥的人可以访问的, 公共密钥可以保存在系统目录内或保存在未加密的电子邮件信息中。它的另一个密钥是专用的, 它用来加密信息但公共密钥可以解密该信息, 它也可以对公共密钥加密的信息解密。在提供同等安全性的前提下, 专用密钥加密的系统速度比较快。

RC5分组密码算法是1994由麻萨诸塞技术研究所的Ronald L. Rivest教授发明的,并由RSA实验室分析。它是参数可变的分组密码算法,三个可变的参数是:分组大小、密钥大小和加密轮数。在此算法中使用了三种运算:异或、加和循环。

RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。由于RC5一个分组长度可变的密码算法,为了便于说明在本文中主要是针对64位的分组w=32进行处理的,下面详细说明了RC5加密解密的处理过程:
1、创建密钥组,RC5算法加密时使用了2r+2个密钥相关的的32位字:,这里r表示加密的轮数。创建这个密钥组的过程是非常复杂的但也是直接的,首先将密钥字节拷贝到32位字的数组L中(此时要注意处理器是little- endian顺序还是big-endian顺序),如果需要,最后一个字可以用零填充。然后利用线性同余发生器模2初始化数组S:

对于i=1到2(r+1)-1: (本应模 ,本文中令w=32)
其中对于16位字32位分组的RC5,P=0xb7e1 Q=0x9e37
对于32位字和64位分组的RC5,P=0xb7e15163 Q=0x9e3779b9
对于64位字和128位分组,P=0xb7151628aed2a6b Q=0x9e3779b97f4a7c15
最后将L与S混合,混合过程如下:
i=j=0
A=B=0
处理3n次(这里n是2(r+1)和c中的最大值,其中c表示输入的密钥字的个数)

2、加密处理,在创建完密钥组后开始进行对明文的加密,加密时,首先将明文分组划分为两个32位字:A和B(在假设处理器字节顺序是little- endian、w=32的情况下,第一个明文字节进入A的最低字节,第四个明文字节进入A的最高字节,第五个明文字节进入B的最低字节,以此类推),其中操作符<<<表示循环左移,加运算是模 (本应模 ,本文中令w=32)的。输出的密文是在寄存器A和B中的内容

3、解密处理,解密也是很容易的,把密文分组划分为两个字:A和B(存储方式和加密一样),这里符合>>>是循环右移,减运算也是模 (本应模 ,本文中令w=32)的。

IDEA算法被认为是当今最好最安全的分组密码算法!

❷ 公开密钥加密技术

谈起密码算法,有的人会觉得陌生,但一提起PGP,大多数网上朋友都很熟悉,它是一个工具软件,向认证中心注册后就可以用它对文件进行加解密或数字签名,PGP所采用的是RSA算法,以后我们会对它展开讨论。密码算法的目的是为了保护信息的保密性、完整性和安全性,简单地说就是信息的防伪造与防窃取,这一点在网上付费系统中特别有意义。密码学的鼻祖可以说是信息论的创始人香农,他提出了一些概念和基本理论,论证了只有一种密码算法是理论上不可解的,那就是 One Time Padding,这种算法要求采用一个随机的二进制序列作为密钥,与待加密的二进制序列按位异或,其中密钥的长度不小于待加密的二进制序列的长度,而且一个密钥只能使用一次。其它算法都是理论上可解的。如DES算法,其密钥实际长度是56比特,作2^56次穷举,就肯定能找到加密使用的密钥。所以采用的密码算法做到事实上不可解就可以了,当一个密码算法已知的破解算法的时间复杂度是指数级时,称该算法为事实上不可解的。顺便说一下,据报道国外有人只用七个半小时成功破解了DES算法。密码学在不断发展变化之中,因为人类的计算能力也像摩尔定律提到的一样飞速发展。作为第一部分,首先谈一下密码算法的概念。
密码算法可以看作是一个复杂的函数变换,C = F M, Key ),C代表密文,即加密后得到的字符序列,M代表明文即待加密的字符序列,Key表示密钥,是秘密选定的一个字符序列。密码学的一个原则是“一切秘密寓于密钥之中”,算法可以公开。当加密完成后,可以将密文通过不安全渠道送给收信人,只有拥有解密密钥的收信人可以对密文进行解密即反变换得到明文,密钥的传递必须通过安全渠道。目前流行的密码算法主要有DESRSA,IDEA,DSA等,还有新近的Liu氏算法,是由华人刘尊全发明的。密码算法可分为传统密码算法和现代密码算法,传统密码算法的特点是加密和解密必须是同一密钥,如DES和IDEA等;现代密码算法将加密密钥与解密密钥区分开来,且由加密密钥事实上求不出解密密钥。这样一个实体只需公开其加密密钥(称公钥,解密密钥称私钥)即可,实体之间就可以进行秘密通信,而不象传统密码算法似的在通信之前先得秘密传递密钥,其中妙处一想便知。因此传统密码算法又称对称密码算法(Symmetric Cryptographic Algorithms ),现代密码算法称非对称密码算法或公钥密码算法( Public-Key Cryptographic Algorithms ),是由Diffie 和Hellman首先在1976年的美国国家计算机会议上提出这一概念的。按照加密时对明文的处理方式,密码算法又可分为分组密码算法和序列密码算法。分组密码算法是把密文分成等长的组分别加密,序列密码算法是一个比特一个比特地处理,用已知的密钥随机序列与明文按位异或。当然当分组长度为1时,二者混为一谈。这些算法以后我们都会具体讨论。
RSA算法
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积。
密钥对的产生。选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。对应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解140多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
RSA的速度。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
RSA的选择密文攻击。
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
DSS/DSA算法
Digital Signature Algorithm
(DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(Digital SignatureStandard)。算法中应用了下述参数:
p:L bits长的素数。L是64的倍数,范围是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x为私钥 ;
y:y = g^x mod p ,( p, q, g, y )为公钥;
H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。
p, q,
g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及验证协议如下:
1. P产生随机数k,k < q;
2. P计算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
签名结果是( m, r, s )。
3. 验证时计算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,则认为签名有效。
DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却作不到

java环境下实现idea算法的加密解密

基于Java的IDEA加密算法探讨
随着Internet的迅速发展,电子商务的浪潮势不可挡,日常工作和数据传输都放在Internet网上进行传输,大大提高了效率,降低了成本,创造了良好的效益。但是,由于 Internet网络协议本身存在着重要的安全问题(IP包本身并不继承任何安全特性,很容易伪造出IP包的地址、修改其内容、重播以前的包以及在传输途中拦截并查看包的内容),使网上的信息传输存在巨大的安全风险电子商务的安全问题也越来越突出。加密是电子商务中最主要的安全技术,加密方法的选取直接影响电子商务活动中信息的安全程度,在电子商务系统中,主要的安全问题都可以通过加密来解决。数据的保密性可通过不同的加密算法对数据加密来实现。
对我国来讲,虽然可以引进很多的外国设备,但加密设备不能依靠引进,因为它涉及到网络安全、国家机密信息的安全,所以必须自己研制。当前国际上有许多加密算法,其中DES(Data Encryption Standard)是发明最早的用得最广泛的分组对称加密算法,DES用56位蜜钥加密64位明文,输出64位密文,DES的56位密钥共有256 种可能的密钥,但历史上曾利用穷举攻击破解过DES密钥,1998年电子边境基金会(EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥,1999年,EFF用22小时完成了破解工作,使DES算法受到了严重打击,使它的安全性受到严重威胁。因为JAVA语言的安全性和网络处理能力较强,本文主要介绍使用IDEA(Internation Data Encryption Algorithm )数据加密算法在Java环境下实现数据的安全传输。

一、IDEA数据加密算法

IDEA数据加密算法是由中国学者来学嘉博士和着名的密码专家 James L. Massey 于1990年联合提出的。它的明文和密文都是64比特,但密钥长为128比特。IDEA 是作为迭代的分组密码实现的,使用 128 位的密钥和 8 个循环。这比 DES 提供了更多的 安全性,但是在选择用于 IDEA 的密钥时,应该排除那些称为“弱密钥”的密钥。DES 只有四个弱密钥和 12 个次弱密钥,而 IDEA 中的弱密钥数相当可观,有 2 的 51 次方个。但是,如果密钥的总数非常大,达到 2 的 128 次方个,那么仍有 2 的 77 次方个密钥可供选择。IDEA 被认为是极为安全的。使用 128 位的密钥,蛮力攻击中需要进行的测试次数与 DES 相比会明显增大,甚至允许对弱密钥测试。而且,它本身也显示了它尤其能抵抗专业形式的分析性攻击。

二、Java密码体系和Java密码扩展

Java是Sun公司开发的一种面向对象的编程语言,并且由于它的平台无关性被大量应用于Internet的开发。Java密码体系(JCA)和Java密码扩展(JCE)的设计目的是为Java提供与实现无关的加密函数API。它们都用factory方法来创建类的例程,然后把实际的加密函数委托给提供者指定的底层引擎,引擎中为类提供了服务提供者接口在Java中实现数据的加密/解密,是使用其内置的JCE(Java加密扩展)来实现的。Java开发工具集1.1为实现包括数字签名和信息摘要在内的加密功能,推出了一种基于供应商的新型灵活应用编程接口。Java密码体系结构支持供应商的互操作,同时支持硬件和软件实现。Java密码学结构设计遵循两个原则:(1)算法的独立性和可靠性。(2)实现的独立性和相互作用性。算法的独立性是通过定义密码服务类来获得。用户只需了解密码算法的概念,而不用去关心如何实现这些概念。实现的独立性和相互作用性通过密码服务提供器来实现。密码服务提供器是实现一个或多个密码服务的一个或多个程序包。软件开发商根据一定接口,将各种算法实现后,打包成一个提供器,用户可以安装不同的提供器。安装和配置提供器,可将包含提供器的ZIP和JAR文件放在CLASSPATH下,再编辑Java安全属性文件来设置定义一个提供器。Java运行环境Sun版本时,提供一个缺省的提供器Sun。

三、Java环境下的实现

1.加密过程的实现

void idea_enc( int data11[], /*待加密的64位数据首地址*/ int key1[]){

int i ;

int tmp,x;

int zz[]=new int[6];

for ( i = 0 ; i < 48 ; i += 6) { /*进行8轮循环*/

for(int j=0,box=i; j<6; j++,box++){

zz[j]=key1[box];

}

x = handle_data(data11,zz);

tmp = data11[1]; /*交换中间两个*/

data11[1] = data11[2];

data11[2] = tmp;

}

tmp = data11[1]; /*最后一轮不交换*/

data11[1] = data11[2];

data11[2] = tmp;

data11[0] = MUL(data11[0],key1[48]);

data11[1] =(char)((data11[1] + key1[49])%0x10000);

data11[2] =(char)((data11[2] + key1[50])%0x10000);

data11[3] = MUL(data11[3],key1[51]);

}

2.解密过程的实现

void key_decryExp(int outkey[])/*解密密钥的变逆处理*/

{ int tmpkey[] = new int[52] ;

int i;

for ( i = 0 ; i < 52 ; i++) {

tmpkey[i] = outkey[ wz_spkey[i] ] ; /*换位*/

}

for ( i = 0 ; i < 52 ; i++) {

outkey[i] = tmpkey[i];

}

for ( i = 0 ; i < 18 ; i++) {

outkey[wz_spaddrever[i]] = (char)(65536-outkey[wz_spaddrever[i]]) ; /*替换成加法逆*/

}

for ( i = 0 ; i < 18 ; i++){

outkey[wz_spmulrevr[i]] =(char)(mulInv(outkey[wz_spmulrevr[i]] )); /*替换成乘法逆*/

}

}

四、总结

在实际应用中,我们可以使用Java开发工具包(JDK)中内置的对Socket通信的支持,通过JCE中的Java流和链表,加密基于Socket的网络通信.我们知道,加密/解密是数据传输中保证数据完整性的常用方法,Java语言因其平台无关性,在Internet上的应用非常之广泛.使用Java实现基于IDEA的数据加密传输可以在不同的平台上实现并具有实现简洁、安全性强等优点。

❹ IDEA加密算法的C语言实现

1、数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。

2、常见加密算法
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和 RC4:用变长密钥对大量数据进行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)国际数据加密算法:使用 128 位密钥提供非常强的安全性;
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法;
BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
其它算法,如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。
比如说,MD5,你在一些比较正式而严格的网站下的东西一般都会有MD5值给出,如安全焦点的软件工具,每个都有MD5。

3、例程:

#include<stdio.h>
#include<process.h>
#include<conio.h>
#include<stdlib.h>
#definemaxim65537
#definefuyi65536
#defineone65536
#defineround8
unsignedintinv(unsignedintxin);
unsignedintmul(unsignedinta,unsignedintb);
voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10]);
voidkey(unsignedintuskey[9],unsignedintZ[7][10]);
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10]);
voidmain()
{
inti,j,k,x;
unsignedintZ[7][10],DK[7][10],XX[5],TT[5],YY[5];
unsignedintuskey[9];
FILE*fpout,*fpin;
printf(" InputKey");
for(i=1;i<=8;i++)
scanf("%6u",&uskey[i]);
for(i=0;i<9;i++)
uskey[i]=100+i*3;
key(uskey,Z);/*产生加密子密钥*/
de_key(Z,DK);/*计算解密子密钥*/
if((fpin=fopen("ekey.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
for(i=0;i<7;i++)
{
for(j=0;j<10;j++)
fprintf(fpin,"%6u",Z[i][j]);
fprintf(fpin," ");
}
fclose(fpin);

/*XX[1..5]中为明文*/
for(i=0;i<4;i++)XX[i]=2*i+101;
clrscr();
printf("Mingwen%6u%6u%6u%6u ",XX[0],XX[1],XX[2],XX[3]);
if((fpin=(fopen("ideaming.txt","w")))==NULL)
{printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpin,"%6u,%6u,%6u,%6u ",XX[0],XX[1],XX[2],XX[3]);
fclose(fpin);
for(i=1;i<=30000;i++)
cip(XX,YY,Z);/*用密钥Z加密XX中的明文并存在YY中*/
printf(" Mingwen%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
if((fpin=fopen("ideamiwn.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
fclose(fpout);
for(i=1;i<=30000;i++)
cip(YY,TT,DK);/*encipherYYtoTTwithKeyDK*/
printf(" JieMi%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
if((fpout=fopen("dideaout.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
fclose(fpout);
}
/*此函数执行IDEA算法中的加密过程*/

voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10])
{
unsignedintr,x1,x2,x3,x4,kk,t1,t2,a;
x1=IN[0];x2=IN[1];x3=IN[2];x4=IN[3];
for(r=1;r<=8;r++)
{
/*对64位的块进行分组运算*/
x1=mul(x1,Z[1][r]);x4=mul(x4,Z[4][r]);
x2=x2+Z[2][r]&one;x3=(x3+Z[3][r])&one;
/*MA结构的函数*/
kk=mul(Z[5][r],(x1^x3));
t1=mul(Z[6][r],(kk+(x2^x4))&one;
/*随机变换PI*/
x1=x1^t1;x4=x4^t2;a=x2^t2;x2=x3^t1;x3=a;
}
/*输出转换*/
OUT[0]=mul(x1,Z[1][round+1]);
OUT[3]=mul(x4,Z[1][round+1]);
OUT[1]=(x3+Z[2][round+1])&one;
OUT[2]=(x2+Z[3][round+1])&one;
}

/*用高低算法上实现乘法运算*/
unsignedintmul(unsignedinta,unsignedintb)
{
longintp;
longunsignedq;
if(a==0)p=maxim-b;
elseif(b==0)p=maxim-a;
else
{
q=(unsignedlong)a*(unsignedlong)b;
p=(q&one)-(q>>16);
if(p<=0)p=p+maxim;
{
return(unsigned)(p&one);
}

/*通过Euclideangcd算法计算xin的倒数*/
unsignedintinv(unsignedintxin)
{
longn1,n2,q,r,b1,b2,t;
if(xin==0)
b2=0;
else
{n1=maxim;n2=xin;b2=1;b1=0;
do{
r=(n1%n2);q=(n1-r)/n2;
if(r==0)
if(b2<0)b2=maxim+b2;
else
{n1=n2;n2=r;
t=b2;
b2=b1-q*b2;b1=t;
}
}while(r!=0);
}
return(unsignedlongint)b2;
}
/*产生加密子密钥Z*/
voidkey(unsignedintuskey[9],unsignedintZ[7][10])
{
unsignedintS[54];
inti,j,r;
for(i=1;i<9;i++)
S[i-1]=uskey[i];
/*shifts*/
for(i=8;i<54;i++)
{
if(i+2)%8==0)/*对于S[14],S[22],...进行计算*/
S[i]=((S[i-7]<<0)^(S[i-14]>>7)&one;
elseif((i+1)%8==0)/*对于S[15],S[23],...进行计算*/
S[i]=((S[i-15]<<9)^(S[i-14]>>7)&one;
else
S[i]=((S[i-7]<<9)^(S[i-6]>>7)&one;
}
/*取得子密钥*/
for(r=1;r<=round+1;r++)
for(j=1;j<7;j++)
Z[j][r]=S[6*(r-1)+j-1];
}

/*计算解子密钥DK*/
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10])
{
intj;
for(j=1;j<=round+1;j++)
{DK[1][round-j+2]=inv(Z[1][j]);
DK[4][round-j+2]=inv(Z[4][j]);
if(i==1|j==round+1)
{
DK[2][round-j+2]=(fuyi-Z[2][j])&one;
DK[3][round-j+2]=(fuyi-Z[3][j])&one;
}
else
{
DK[2][round-j+2]=inv(Z[3][j]);
DK[3][round-j+2]=inv(Z[2][j]);
}
}
for(j=1;j<=round+1;j++)
{
DK[5][round-j+2]=inv(Z[5][j]);
DK[6][round-j+2]=inv(Z[6][j]);
}

}

❺ 对成加密与非对称加密各有哪些特点

一、对称加密算法在电子商务交易过程中存在几个问题:
1、对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),
2、它比DES的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty
Good Privacy)系统使用。
二、非对称加密算法实现机密信息交换的基本过程是:
1、甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。
2、非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要,但加密和解密花费时间长、速度慢,它不适合于对文件加密而只适用于对少量数据进行加密。

❻ pgp加密的介绍

PGP加密系统是采用公开密钥加密与传统密钥加密相结合的一种加密技术。它使用一对数学上相关的钥匙,其中一个(公钥)用来加密信息,另一个(私钥)用来解密信息。PGP采用的传统加密技术部分所使用的密钥称为“会话密钥”(sek)。每次使用时,PGP都随机产生一个128位的IDEA会话密钥,用来加密报文。公开密钥加密技术中的公钥和私钥则用来加密会话密钥,并通过它间接地保护报文内容。

❼ 你了解哪些数据加密技术 结合相关资料进行简单介绍

加密技术是电子商务采取的主要安全保密措施,是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。常见加密技术分类有:对称加密、非对称加密、专用密钥、公开密钥。

1.对称加密。

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难。

除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。

2.加密技术非对称。

1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。相对于“对称加密算法”这种方法也叫做“非对称加密算法”。

与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥 (privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

(7)idea公共密钥加密系统扩展阅读:

常规密码的优点是有很强的保密强度,且经受住时间的检验和攻击,但其密钥必须通过安全的途径传送。因此,其密钥管理成为系统安全的重要因素。

在公钥密码中,收信方和发信方使用的密钥互不相同,而且几乎不可能从加密密钥推导解密密钥。比较着名的公钥密码算法有:RSA、背包密码、McEliece密码、Diffe,Hellman、Rabin、Ong?Fiat?Shamir、零知识证明的算法、椭圆曲线、EIGamal算法等等。最有影响的公钥密码算法是RSA,它能抵抗到目前为止已知的所有密码攻击。

阅读全文

与idea公共密钥加密系统相关的资料

热点内容
建立表结构的命令 浏览:579
安卓文件为什么苹果手机打不开 浏览:82
东奥轻4可以在哪个app做题 浏览:163
金融科技加密卡 浏览:835
程序员那么开一共有多少集 浏览:980
面试程序员被问数学问题怎么办 浏览:91
背大学英语的app哪个最好 浏览:719
哪个app买的衣服好 浏览:467
天刀以前玩过的服务器忘了怎么办 浏览:211
单片机基础代码解读 浏览:233
广东青少年编程学习 浏览:509
买男士香水去哪个app 浏览:548
androidsleep函数 浏览:151
android内核代码下载 浏览:665
服务器如何添加墨迹 浏览:747
diglinux安装 浏览:279
虚拟机执行命令 浏览:444
cctv16奥林匹克频道加密播出 浏览:900
c盘微信文件夹隐私 浏览:229
asp压缩mdb 浏览:670