导航:首页 > 文档加密 > 图示对称加密

图示对称加密

发布时间:2024-06-26 11:42:57

A. 用图示说明对称加密技术和非对称加密技术相结合(即数字信封技术)的工作过程。

数字信封技术用于保证资料在传输过程中的安全。对称密钥加密和公钥加密技术各有其优缺点,对称密钥加密算法效率高,但密钥的愤发和管理都很困难;而公钥加密算法密钥易于管理和传递,但运行效率太低,不适于加密大量的消息,而且它要求被加密的信息块长度要小于密钥的长度。数字信封技术结合了密钥加密技术和公钥加密技术各自的优点,克服了密钥加密技术中密钥分发和管理困难和公钥加密技术中加解密效率低的缺点,充分利用了密钥系统的高效性和公钥系统的灵活性,保证信息在传输过程中的灵活性。
数字信封技术首先使用密钥加密技术对要发送的消息进行加密;再利用公钥加密技术对密钥系统中使用的密钥进行加密。然后把加密的消息和加密的密钥一起传送给接收方。其具体的实现方法和步骤如下:

说明:以上图中的步骤可以解释为:
①在需要发送信息时,发送方Alice先生成一个对称密钥K;
②Alice利用生成的对称密钥K和相应的对称密钥算法E( • )对要发送的明文消息P进行加密,生成密文C=Ek(P);
③然后Alice再用接收方Bob提供的公钥KpB 对刚才用到的加密明文P的密钥K进行加密,得到加密后的密钥Ck;
④Alice把加密后的消息C和加密后的对称密钥Ck作为密文一起传送给Bob。
⑤Bob接收到密文后,先用自己的私钥解密Ck还原出对称密钥K,然后再用得到的K,根据实现商定好的对称密钥算法解密得到明文P。

数字信封技术实际上是使用双层加密体制。在内层,利用对称密钥加密技术,每次传送消息都可以重新生成新的对称密钥,实现了一次一密,保证了信息的安全性。在外层,使用公钥加密技术对对称密钥进行加密,保证对称密钥传输的安全性。数字信封技术的应用,使资料信息在公共为了中的传输有了安全保障。

B. AES加解密使用总结

AES, 高级加密标准, 是采用区块加密的一种标准, 又称Rijndael加密法. 严格上来讲, AES和Rijndael又不是完全一样, AES的区块长度固定为128比特, 秘钥长度可以是128, 192或者256. Rijndael加密法可以支持更大范围的区块和密钥长度, Rijndael使用的密钥和区块长度均可以是128,192或256比特. AES是对称加密最流行的算法之一.

我们不去讨论具体的AES的实现, 因为其中要运用到大量的高等数学知识, 单纯的了解AES流程其实也没什么意义(没有数学基础难以理解), 所以我们今天着重来总结一些使用过程中的小点.

当然了分组密码的加密模式不仅仅是ECB和CBC这两种, 其他的我们暂不涉及.

上面说的AES是一种区块加密的标准, 那加密模式其实可以理解为处理不同区块的方式和联系.

ECB可以看做最简单的模式, 需要加密的数据按照区块的大小分为N个块, 并对每个块独立的进行加密

此种方法的缺点在于同样的明文块会被加密成相同的密文块, 因此, 在某些场合, 这种方法不能提供严格的数据保密性. 通过下面图示例子大家就很容易明白了

我们的项目中使用的就是这种模式, 在CBC模式中, 每个明文块与前一个块的加密结果进行异或后, 在进行加密, 所以每个块的加密都依赖前面块的加密结果的, 同时为了保证第一个块的加密, 在第一个块中需要引入初始化向量iv.

CBC是最常用的模式. 他的缺点是加密过程只能是串行的, 无法并行, 因为每个块的加密要依赖到前一个块的加密结果, 同时在加密的时候明文中的细微改变, 会导致后面所有的密文块都发生变化. 但此种模式也是有优点的, 在解密的过程中, 每个块的解密依赖上一个块的加密结果, 所以我们要解密一个块的时候, 只需要把他前面一个块也一起读取, 就可以完成本块的解密, 所以这个过程是可以并行操作的.

AES加密每个块blockSize是128比特, 那如果我们要加密的数据不是128比特的倍数, 就会存在最后一个分块不足128比特, 那这个块怎么处理, 就用到了填充模式. 下面是常用的填充模式.

PKCS7可用于填充的块大小为1-255比特, 填充方式也很容易理解, 使用需填充长度的数值paddingSize 所表示的ASCII码 paddingChar = chr(paddingSize)对数据进行冗余填充. (后面有解释)

PKCS5只能用来填充8字节的块

我们以AES(128)为例, 数据块长度为128比特, 16字节, 使用PKCS7填充时, 填充长度为1-16. 注意, 当加密长度是16整数倍时, 反而填充长度是最大的, 要填充16字节. 原因是 "PKCS7" 拆包时会按协议取最后一个字节所表征的数值长度作为数据填充长度, 如果因真实数据长度恰好为16的整数倍而不进行填充, 则拆包时会导致真实数据丢失.

举一个blockSize为8字节的例子

第二个块中不足8字节, 差4个字节, 所以用4个4来填充

严格来讲 PKCS5不能用于AES, 因为AES最小是128比特(16字节), 只有在使用DES此类blockSize为64比特算法时, 考虑使用PKCS5

我们的项目最开始加解密库使用了CryptoSwift, 后来发现有性能问题, 就改为使用IDZSwiftCommonCrypto.

这里咱们结合项目中边下边播边解密来提一个点, 具体的可以参考之前写的 边下边播的总结 . 因为播放器支持拖动, 所以我们在拖拽到一个点, 去网络拉取对应数据时, 应做好range的修正, 一般我们都会以range的start和end为基准, 向前后找到包含这个range的所有块范围. 打比方说我们需要的range时10-20, 这是我们应该修正range为0-31, 因为起点10在0-15中, 20 在16-31中. 这是常规的range修正.(第一步 找16倍数点).

但是在实际中, 我们请求一段数据时, 还涉及到解密器的初始化问题, 如果我们是请求的0-31的数据, 因为是从0开始, 所以我们的解密器只需要用key和初始的iv来进行初始化, 那如果经过了第一步的基本range修正后, 我们请求的数据不是从0开始, 那我们则还需要继续往前读取16个字节的数据, 举个例子, 经过第一步修正后的range为16-31, 那我们应该再往前读取16字节, 应该是要0-31 这32个字节数据, 拿到数据后,使用前16个字节(上一个块的密文)当做iv来初始化解密器.

还有一个要注意的点是, 数据解密的过程中, 还有可能会吞掉后面16个字节的数据, 我暂时没看源码, 不知道具体因为什么, 所以保险起见, 我们的range最好是再向后读取6个字节.

感谢阅读

参考资料

https://zh.wikipedia.org/zh-cn/%E9%AB%98%E7%BA%A7%E5%8A%A0%E5%AF%86%E6%A0%87%E5%87%86
https://segmentfault.com/a/1190000019793040
https://ithelp.ithome.com.tw/articles/10250386

C. 区块链技术中的哈希算法是什么

1.1. 简介

计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:

D. 【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES, 主要用于加密信息流。

伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段

ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

<meta charset="utf-8">

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

选一个随机数 k, 那么k * P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

签名过程:

生成随机数R, 计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M, RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

公式推论:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。

Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

计算ECDH阶段:

Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。

Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。

共享秘钥验证:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

2、签名算法采用的是 ECDSA

3、认证方式采用的是 H-MAC

4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

E. 网络密钥是什么和WiFi密码是一回事吗

是的 是一样的。
网络安全密钥,正确的读法为“网络安全密匙”,即你的WiFi密码。

装无线wifi提示输入‘网络安全密匙’只需要输入一串8到18位数的数字与字母即可公用密钥加密技术使用不对称的密钥来加密和解密,每对密钥包含一个公钥和一个私钥,公钥是公开,而且广泛分布的,而私钥从来不公开,只有自己知道。
互联网络是一个开放式的系统,任何人都可以通过它共享自己的资源,获取需要的信息。当人们在网络上进行信息交流的时候,比如聊天、收发邮件,或者登录需要提供个人信息的站点,这些包含着重要个人资料的信息包很可能在到达最终目的地前被第三方截获并破解。所以保护个人隐私是互联网络的头等大事,而使用加密密钥是最简单、有效的方法。信息在发送前需要按照规则进行数据的重新排列组合,打乱了原有的数据顺序,这样即便数据包被第三方截获。

F. 常见的加密算法、原理、优缺点、用途

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。

1.对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方

2.接收方收到加密后的报文后,结合解密算法使用相同密钥解密组合后得出原始数据。

图示:

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥(不能公开)才能解密,反之亦然。N 个用户通信,需要2N个密钥。

非对称密钥加密适合对密钥或身份信息等敏感信息加密,从而在安全性上满足用户的需求。

1.甲使用乙的公钥并结合相应的非对称算法将明文加密后发送给乙,并将密文发送给乙。
2.乙收到密文后,结合自己的私钥和非对称算法解密得到明文,得到最初的明文。

图示:

单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应(少量消息位的变化会引起信息摘要的许多位变化)。

单向加密算法常用于提取数据指纹,验证数据的完整性、数字摘要、数字签名等等。

1.发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。

2.接收方将用于比对验证的明文使用相同的单向加密算法进行加密,得出加密后的密文串。

3.将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。

图示:

MD5、sha1、sha224等等

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密

常见的密钥交换方式有下面两种:

将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用

DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。

DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。

如:

安全性

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

答案:使用公钥证书

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合

用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能

签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。

公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

1.客户A准备好要传送的数字信息(明文)。(准备明文)

2.客户A对数字信息进行哈希(hash)运算,得到一个信息摘要。(准备摘要)

3.客户A用CA的私钥(SK)对信息摘要进行加密得到客户A的数字签名,并将其附在数字信息上。(用私钥对数字信息进行数字签名)

4.客户A随机产生一个加密密钥(DES密钥),并用此密钥对要发送的信息进行加密,形成密文。 (生成密文)

5.客户A用双方共有的公钥(PK)对刚才随机产生的加密密钥进行加密,将加密后的DES密钥连同密文一起传送给乙。(非对称加密,用公钥对DES密钥进行加密)

6.银行B收到客户A传送过来的密文和加过密的DES密钥,先用自己的私钥(SK)对加密的DES密钥进行解密,得到DES密钥。(用私钥对DES密钥解密)

7.银行B然后用DES密钥对收到的密文进行解密,得到明文的数字信息,然后将DES密钥抛弃(即DES密钥作废)。(解密文)

8.银行B用双方共有的公钥(PK)对客户A的数字签名进行解密,得到信息摘要。银行B用相同的hash算法对收到的明文再进行一次hash运算,得到一个新的信息摘要。(用公钥解密数字签名)

9.银行B将收到的信息摘要和新产生的信息摘要进行比较,如果一致,说明收到的信息没有被修改过。(对比信息摘要和信息)

答案是没法保证CA的公钥没有被篡改。通常操作系统和浏览器会预制一些CA证书在本地。所以发送方应该去那些通过认证的CA处申请数字证书。这样是有保障的。

但是如果系统中被插入了恶意的CA证书,依然可以通过假冒的数字证书发送假冒的发送方公钥来验证假冒的正文信息。所以安全的前提是系统中不能被人插入非法的CA证书。

END

阅读全文

与图示对称加密相关的资料

热点内容
python遍历两个数组 浏览:393
手游搭建云服务器 浏览:401
视易锋云服务器启动黑屏 浏览:139
python怎么获取网页a标签内容 浏览:982
app更新后老的安装包去哪里了 浏览:199
集合运算法则差集 浏览:310
x2pdf 浏览:271
python源码cs 浏览:101
数控机床自动编程软件 浏览:738
方舟的服务器号是什么 浏览:111
没有服务器怎么发现其他节点 浏览:337
文明传奇怎么开服务器 浏览:56
javalistint 浏览:675
程序员到公司当领导 浏览:225
用算法控制玩家的行为 浏览:484
androidsdk17下载 浏览:793
怎么给单独表格添加密码 浏览:14
下载压缩密码 浏览:260
android系统上编程 浏览:470
单片机模拟i2c从机 浏览:238