RSA、Elgamal、背包算法、Rabin、D-H、ECC椭圆曲线加密算法。
非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。
‘贰’ 如何用通俗易懂的话来解释非对称加密
在采用对称密钥体系时,加密与解密采用相同的算法和密钥,这就说明收发双方需要保存有相同密钥。这就需要一个安全的通道来传递这个密钥,但实际上这样安全的通道是不方便的或者没有的。所以就有了非对称形式的(不同的密钥)。公钥是公开的,私钥则只有接受者才有,这样就不必传递私钥了,更安全了。基本的数学原理?
加解密过程由单向陷门函数实现。单向陷门函数是指由已知的y=f(x)和x求出y是简单的,但是已知y=f(x)和y求出x是困难的。当前工程应用大都基于大数分解,离散对数和椭圆曲线此类数学难题。
‘叁’ 图文彻底搞懂非对称加密(公钥密钥)
前文详细讲解了对称加密及算法原理。那么是不是对称加密就万无一失了呢?对称加密有一个天然的缺点,就是加密方和解密方都要持有同样的密钥。你可以能会提出疑问:既然要加、解密,当然双方都要持有密钥,这有什么问题呢?别急,我们继续往下看。
我们先看一个例子,小明和小红要进行通信,但是不想被其他人知道通信的内容,所以双方决定采用对称加密的方式。他们做了下面的事情:
1、双方商定了加密和解密的算法
2、双方确定密钥
3、通信过程中采用这个密钥进行加密和解密
这是不是一个看似完美的方案?但其中有一个步骤存在漏洞!
问题出在步骤2:双方确定密钥!
你肯定会问,双方不确定密钥,后面的加、解密怎么做?
问题在于确定下来的密钥如何让双方都知道。密钥在传递过程中也是可能被盗取的!这里引出了一个经典问题:密钥配送问题。
小明和小红在商定密钥的过程中肯定会多次沟通密钥是什么。即使单方一次确定下来,也要发给对方。加密是为了保证信息传输的安全,但密钥本身也是信息,密钥的传输安全又该如何保证呢?难不成还要为密钥的传输再做一次加密?这样不就陷入了死循环?
你是不是在想,密钥即使被盗取,不还有加密算法保证信息安全吗?如果你真的有这个想法,那么赶紧复习一下上一篇文章讲的杜绝隐蔽式安全性。任何算法最终都会被破译,所以不能依赖算法的复杂度来保证安全。
小明和小红现在左右为难,想加密就要给对方发密钥,但发密钥又不能保证密钥的安全。他们应该怎么办呢?
有如下几种解决密钥配送问题的方案:
非对称加密也称为公钥密码。我更愿意用非对称加密这种叫法。因为可以体现出加密和解密使用不同的密钥。
对称加密中,我们只需要一个密钥,通信双方同时持有。而非对称加密需要4个密钥。通信双方各自准备一对公钥和私钥。其中公钥是公开的,由信息接受方提供给信息发送方。公钥用来对信息加密。私钥由信息接受方保留,用来解密。既然公钥是公开的,就不存在保密问题。也就是说非对称加密完全不存在密钥配送问题!你看,是不是完美解决了密钥配送问题?
回到刚才的例子,小明和下红经过研究发现非对称加密能解决他们通信的安全问题,于是做了下面的事情:
1、小明确定了自己的私钥 mPrivateKey,公钥 mPublicKey。自己保留私钥,将公钥mPublicKey发给了小红
2、小红确定了自己的私钥 hPrivateKey,公钥 hPublicKey。自己保留私钥,将公钥 hPublicKey 发给了小明
3、小明发送信息 “周六早10点soho T1楼下见”,并且用小红的公钥 hPublicKey 进行加密。
4、小红收到信息后用自己的私钥 hPrivateKey 进行解密。然后回复 “收到,不要迟到” 并用小明的公钥mPublicKey加密。
5、小明收到信息后用自己的私钥 mPrivateKey 进行解密。读取信息后心里暗想:还提醒我不迟到?每次迟到的都是你吧?
以上过程是一次完整的request和response。通过这个例子我们梳理出一次信息传输的非对称加、解密过程:
1、消息接收方准备好公钥和私钥
2、私钥接收方自己留存、公钥发布给消息发送方
3、消息发送方使用接收方公钥对消息进行加密
4、消息接收方用自己的私钥对消息解密
公钥只能用做数据加密。公钥加密的数据,只能用对应的私钥才能解密。这是非对称加密的核心概念。
下面我用一个更为形象的例子来帮助大家理解。
我有下图这样一个信箱。
由于我只想接收我期望与之通信的朋友信件。于是我在投递口加了一把锁,这把锁的钥匙(公钥)我可以复制n份,发给我想接受其信件的人。只有这些人可以用这把钥匙打开寄信口,把信件投入。
相信通过这个例子,可以帮助大家彻底理解公钥和私钥的概念。
RSA 是现在使用最为广泛的非对称加密算法,本节我们来简单介绍 RSA 加解密的过程。
RSA 加解密算法其实很简单:
密文=明文^E mod N
明文=密文^D mod N
RSA 算法并不会像对称加密一样,用玩魔方的方式来打乱原始信息。RSA 加、解密中使用了是同样的数 N。公钥是公开的,意味着 N 也是公开的。所以私钥也可以认为只是 D。
我们接下来看一看 N、E、D 是如何计算的。
1、求 N
首先需要准备两个很大质数 a 和 b。太小容易破解,太大计算成本太高。我们可以用 512 bit 的数字,安全性要求高的可以使用 1024,2048 bit。
N=a*b
2、求 L
L 只是生成密钥对过程中产生的数,并不参与加解密。L 是 (a-1) 和 (b-1) 的最小公倍数
3、求 E(公钥)
E 有两个限制:
1<E<
E和L的最大公约数为1
第一个条件限制了 E 的取值范围,第二个条件是为了保证有与 E 对应的解密时用到的 D。
4、求 D(私钥)
D 也有两个限制条件:
1<D<L
E*D mod L = 1
第二个条件确保密文解密时能够成功得到原来的明文。
由于原理涉及很多数学知识,这里就不展开细讲,我们只需要了解这个过程中用到这几个数字及公式。这是理解RSA 安全性的基础。
由于 N 在公钥中是公开的,那么只需要破解 D,就可以解密得到明文。
在实际使用场景中,质数 a,b 一般至少1024 bit,那么 N 的长度在 2048 bit 以上。D 的长度和 N 接近。以现在计算机的算力,暴力破解 D 是非常困难的。
公钥是公开的,也就是说 E 和 N 是公开的,那么是否可以通过 E 和 N 推断出 D 呢?
E*D mod L = 1
想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍数。想知道 L 就需要知道质数 a 和 b。破解者并不知道这两个质数,想要破解也只能通过暴力破解。这和直接破解 D 的难度是一样的。
等等,N 是公开的,而 N = a*b。那么是否可以对 N 进行质因数分解求得 a 和 b 呢?好在人类还未发现高效进行质因数分解的方法,因此可以认为做质因数分解非常困难。
但是一旦某一天发现了快速做质因数分解的算法,那么 RSA 就不再安全
我们可以看出大质数 a 和 b 在 RSA 算法中的重要性。保证 a 和 b 的安全也就确保了 RSA 算法的安全性。a 和 b 是通过伪随机生成器生成的。一旦伪随机数生成器的算法有问题,导致随机性很差或者可以被推断出来。那么 RSA 的安全性将被彻底破坏。
中间人攻击指的是在通信双方的通道上,混入攻击者。他对接收方伪装成发送者,对放送放伪装成接收者。
他监听到双方发送公钥时,偷偷将消息篡改,发送自己的公钥给双方。然后自己则保存下来双方的公钥。
如此操作后,双方加密使用的都是攻击者的公钥,那么后面所有的通信,攻击者都可以在拦截后进行解密,并且篡改信息内容再用接收方公钥加密。而接收方拿到的将会是篡改后的信息。实际上,发送和接收方都是在和中间人通信。
要防范中间人,我们需要使用公钥证书。这部分内容在下一篇文章里会做介绍。
和对称加密相比较,非对称加密有如下特点:
1、非对称加密解决了密码配送问题
2、非对称加密的处理速度只有对称加密的几百分之一。不适合对很长的消息做加密。
3、1024 bit 的 RSA不应该在被新的应用使用。至少要 2048 bit 的 RSA。
RSA 解决了密码配送问题,但是效率更低。所以有些时候,根据需求可能会配合使用对称和非对称加密,形成混合密码系统,各取所长。
最后提醒大家,RSA 还可以用于签名,但要注意是私钥签名,公钥验签。发信方用自己的私钥签名,收信方用对方公钥验签。关于签名,后面的文章会再详细讲解。