‘壹’ 用于激光打标机的文件要什么格式
标记内容可以是文字、图形、图片、序列号、条形码及二维码等,支持PLT、DXF、BMP等文件格激光打标设备一般支持windows xp/7系统的。
文件的话支持的也比较多AI,PLT,DXF,DST,BMP,JPG,PGE,PNA,TIF,CAD等很多都可以的,要清楚自己打标用的格式,一般打标机都可以支持的。
(1)晶体光学pdf扩展阅读:
“热加工”具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。
“冷加工”具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。
这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生"热损伤"副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用。例如,电子工业中使用准分子激光器在基底材料上沉积化学物质薄膜,在半导体基片上开出狭窄的槽。
‘贰’ x60pro+参数
x60pro+参数如下:
vivo X60 Pro+将配备一块120Hz中置开孔屏,核心则毫无悬念地采用了骁龙888移动平台,支持55W超级闪充。后置方面则堆料十足,将配备5000万像素全焦段四摄,其中也会延用微云台镜头、蔡司光学镜头并有蔡司T*镀膜加持,这也将会是vivo首款采用了蔡司T*镀膜的合作新机。
vivo X60 Pro+的后置镜头矩阵模组是目前市面上最大的手机之一,在硬件规格上vivo X60 Pro+完全符合超大杯之名。配合上近年来vivo对影像上的深耕和优化,相信vivo X60 Pro+的拍摄能力相比上一代还会有所提升。
产品配置
vivo X60 Pro+ 搭载高通骁龙 888 芯片,采用增强版 LPDDR5 内存与增强版 UFS 3.1 闪存。
vivo X60 Pro + 相机部分采用两层阶梯式设计,搭配玻璃、金属不同材质,手机拥有深海蓝与经典橙两款配色,搭配高档素皮材质后盖。
vivo X60 Pro + 主摄采用复合多层镀膜 + 纳米晶体结构镀膜,搭配双主摄,包括 5000 万像素的三星 GN1与4800 万像素的索尼 IMX598 微云台主摄。
以上内容参考:网络—vivo X60 Pro+
‘叁’ 如何对x射线图进行物相分析方法
晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据.制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法.鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析.目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析.
目前,物相分析存在的问题主要有:⑴ 待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果.这时若以该线作为某相的最强线将找不到任何对应的卡片.⑵ 在众多卡片中找出满足条件的卡片,十分复杂而繁锁.虽然可以利用计算机辅助检索,但仍难以令人满意.⑶ 定量分析过程中,配制试样、绘制定标曲线或者K值测定及计算,都是复杂而艰巨的工作.为此,有人提出了可能的解决办法,认为 从相反的角度出发,根据标准数据(PDF卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线.通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以更准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程.
2、点阵常数的精确测定
点阵常数是晶体物质的基本结构参数,测定点阵常数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用.点阵常数的测定是通过X射线衍射线的位置(θ )的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值.
点阵常数测定中的精确度涉及两个独立的问题,即波长的精度和布拉格角的测量精度.波长的问题主要是X射线谱学家的责任,衍射工作者的任务是要在波长分布与衍射线分布之间建立一一对应的关系.知道每根反射线的密勒指数后就可以根据不同的晶系用相应的公式计算点阵常数.晶面间距测量的精度随θ 角的增加而增加, θ越大得到的点阵常数值越精确,因而点阵常数测定时应选用高角度衍射线.误差一般采用图解外推法和最小二乘法来消除,点阵常数测定的精确度极限处在1×10-5附近.
3、应力的测定
X射线测定应力以衍射花样特征的变化作为应变的量度.宏观应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各晶粒中同名晶面间距变化相同,导致衍射线向某方向位移,这就是X射线测量宏观应力的基础;微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为某些区域晶面间距增加、某些区域晶面间距减少,结果使衍射线向不同方向位移,使其衍射线漫散宽化,这是X射线测量微观应力的基础.超微观应力在应变区内使原子偏离平衡位置,导致衍射线强度减弱,故可以通过X射线强度的变化测定超微观应力.测定应力一般用衍射仪法.
X射线测定应力具有非破坏性,可测小范围局部应力,可测表层应力,可区别应力类型、测量时无需使材料处于无应力状态等优点,但其测量精确度受组织结构的影响较大,X射线也难以测定动态瞬时应力.
4、晶粒尺寸和点阵畸变的测定
若多晶材料的晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到.这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了.纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性质和尺度等方面的信息.
在晶粒尺寸和点阵畸变测定过程中,需要做的工作有两个:⑴ 从实验线形中得出纯衍射线形,最普遍的方法是傅里叶变换法和重复连续卷积法.⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信息.这个步骤主要是找出各种使谱线变宽的因素,并且分离这些因素对宽度的影响,从而计算出所需要的结果.主要方法有傅里叶法、线形方差法和积分宽度法.
5、单晶取向和多晶织构测定
单晶取向的测定就是找出晶体样品中晶体学取向与样品外坐标系的位向关系.虽然可以用光学方法等物理方法确定单晶取向,但X衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息.一般用劳埃法单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系.透射劳埃法只适用于厚度小且吸收系数小的样品;背射劳埃法就无需特别制备样品,样品厚度大小等也不受限制,因而多用此方法 .
多晶材料中晶粒取向沿一定方位偏聚的现象称为织构,常见的织构有丝织构和板织构两种类型.为反映织构的概貌和确定织构指数,有三种方法描述织构:极图、反极图和三维取向函数,这三种方法适用于不同的情况.对于丝织构,要知道其极图形式,只要求出求其丝轴指数即可,照相法和衍射仪法是可用的方法.板织构的极点分布比较复杂,需要两个指数来表示,且多用衍射仪进行测定 .