导航:首页 > 文档加密 > 数据加密算法的实现结果与分析

数据加密算法的实现结果与分析

发布时间:2025-04-11 04:18:18

Ⅰ 求DES加密算法详解拜托了各位 谢谢

DES加密算法是分组加密算法,明文以64位为单位分成块。64位数据在64位密钥的控制下,经过初始变换后,进行16轮加密迭代:64位数据被分成左右两半部分,每部分32位,密钥与右半部分相结合,然后再与左半部分相结合,结果作为新的右半部分;结合前的右半部分作为新的左半部分。这一系列步骤组成一轮。这种轮换要重复16次。最后一轮之后,再进行初始置换的逆置换,就得到了64位的密文。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程 (1)初始变换。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。例如输入的第58位,在输出的时候被置换到第1位;输入的是第7位,在输出时被置换到第64位。 (2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始换位的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过n轮处理后的点左右32位分别为Ln和Rn,则可做如下定义: Ln=Rn-1 Rn=Ln-1 其中,kn是向第n轮输入的48位的子密钥,Ln-1和Rn-1分别是第n-1轮的输出,f是Mangler函数。 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的 最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 通过重复某些位将32位的右半部分按照扩展表3扩展换位表扩展为48位,而56位的密钥先移位然后通过选择其中的某些位减少至48位,48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒将这48位替代成新的32位数据,再将其置换一次。这些S-盒输入6位,输出4位。 一个S盒中具有4种替换表(行号用0、1、2、3表示),通过输入的6位的开头和末尾两位选定行,然后按选定的替换表将输入的6位的中间4位进行替代,例如:当向S1输入011011时,开头和结尾的组合是01,所以选中编号为1的替代表,根据中间4位1101,选定第13列,查找表中第1行第13列所示的值为5,即输出0101,这4位就是经过替代后的值。按此进行,输出32位,再按照表4 单纯换位表P进行变换,这样就完成了f(R,K)的变换 3.子密钥生成过程 钥通常表示为64位的自然数,首先通过压缩换位PC-1去掉每个字节的第8位,用作奇偶校验,因此,密钥去掉第8、16、24……64位减至56位,所以实际密钥长度为56位,而每轮要生成48位的子密钥。 输入的64位密钥,首先通过压缩换位得到56位的密钥,每层分成两部分,上部分28位为C0,下部分为D0。C0和D0依次进行循环左移操作生成了C1和D1,将C1和D1合成56位,再通过压缩换位PC-2输出48位的子密钥K1,再将C1和D1进行循环左移和PC-2压缩换位,得到子密钥K2......以此类推,得到16个子密钥。密钥压缩换位表如表6所示。在产生子密钥的过程中,L1、L2、L9、L16是循环左移1位,其余都是左移2位,左移次数如表7所示。 详细信息见 http://www.studa.net/yingyong/100126/11085967.html

Ⅱ 【密码学系列】|| 聊聊密码学中的DES算法

DES算法,全称为数据加密标准(Data Encryption Standard),是密码学领域中一种广泛应用的分组密码算法。它在设计上旨在为数据提供高强度的加密保护,确保在信息化时代中个人隐私的安全。本文将深入探讨DES算法的结构、工作流程以及核心组件,帮助您理解其加密原理。

首先,DES算法具有独特的参数和工作流程。其参数包括64位的密钥和64位的数据块。在数据块的处理过程中,DES将64位明文输入块分为左右两部分,每部分32位,分别记为L0和R0。然后,通过一系列复杂变换和操作,将两部分数据进行交织,生成最终的密文输出。这一过程的精髓在于Feistel结构,它使得DES的加密和解密流程在逻辑上完全相同,简化了硬件和软件的实现。

在轮结构中,DES的核心加密操作被称为F函数。该函数由四步组成:秘钥置换、扩展变换、S盒代替和P盒置换。这些步骤共同构成了DES加密的核心逻辑,确保了数据在经过复杂变换后,仅能由持有相应密钥的人进行解密。

具体而言,秘钥置换用于生成每轮迭代所需的子密钥,这些子密钥在后续的变换过程中用于控制和引导数据的流向。扩展变换则将数据的右半部分从32位扩展到48位,增加数据复杂度。S盒代替是加密过程中的核心,它将输入的32位数据通过一系列复杂的逻辑操作,转换为输出的32位数据。最后,P盒置换则对S盒输出的数据进行一次最终的变换,确保加密效果的一致性。

经过16轮的迭代加密后,数据将被分解为L16和R16。通过逆置换操作,将初始置换的反向应用,最终得到加密后所需的密文输出。逆置换规则与初始置换规则相对应,确保了数据的加密和解密流程的无缝衔接。

DES算法的实现依赖于一系列数学运算和逻辑操作,其设计的复杂性和安全性使得它成为密码学领域的一个重要里程碑。通过理解DES的工作原理,我们可以更好地评估其在数据保护中的作用,同时认识到在信息化时代保护个人隐私的重要性。

Ⅲ 信息加密技术的加密技术分析

加密就是通过密码算术对数据进行转化,使之成为没有正确密钥任何人都无法读懂的报文。而这些以无法读懂的形式出现的数据一般被称为密文。为了读懂报文,密文必须重新转变为它的最初形式--明文。而含有用来以数学方式转换报文的双重密码就是密钥。在这种情况下即使一则信息被截获并阅读,这则信息也是毫无利用价值的。而实现这种转化的算法标准,据不完全统计,到现在为止已经有近200多种。在这里,主要介绍几种重要的标准。按照国际上通行的惯例,将这近200种方法按照双方收发的密钥是否相同的标准划分为两大类:一种是常规算法(也叫私钥加密算法或对称加密算法),其特征是收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的。比较着名的常规密码算法有:美国的DES及其各种变形,比如3DES、GDES、New DES和DES的前身Lucifer; 欧洲的IDEA;日本的FEAL N、LOKI?91、Skipjack、RC4、RC5以及以代换密码和转轮密码为代表的古典密码等。在众多的常规密码中影响最大的是DES密码,而最近美国NIST(国家标准与技术研究所)推出的AES将有取代DES的趋势,后文将作出详细的分析。常规密码的优点是有很强的保密强度,且经受住时间的检验和攻击,但其密钥必须通过安全的途径传送。因此,其密钥管理成为系统安全的重要因素。另外一种是公钥加密算法(也叫非对称加密算法)。其特征是收信方和发信方使用的密钥互不相同,而且几乎不可能从加密密钥推导解密密钥。比较着名的公钥密码算法有:RSA、背包密码、McEliece密码、Diffe Hellman、Rabin、Ong Fiat Shamir、零知识证明的算法、椭圆曲线、EIGamal算法等等⑷。最有影响的公钥密码算法是RSA,它能抵抗到目前为止已知的所有密码攻击,而最近势头正劲的ECC算法正有取代RSA的趋势。公钥密码的优点是可以适应网络的开放性要求,且密钥管理问题也较为简单,尤其可方便的实现数字签名和验证。但其算法复杂,加密数据的速率较低。尽管如此,随着现代电子技术和密码技术的发展,公钥密码算法将是一种很有前途的网络安全加密体制。这两种算法各有其短处和长处,在下面将作出详细的分析。 在私钥加密算法中,信息的接受者和发送者都使用相同的密钥,所以双方的密钥都处于保密的状态,因为私钥的保密性必须基于密钥的保密性,而非算法上。这在硬件上增加了私钥加密算法的安全性。但同时我们也看到这也增加了一个挑战:收发双方都必须为自己的密钥负责,这种情况在两者在地理上分离显得尤为重要。私钥算法还面临这一个更大的困难,那就是对私钥的管理和分发十分的困难和复杂,而且所需的费用十分的庞大。比如说,一个n个用户的网络就需要派发n(n-1)/2个私钥,特别是对于一些大型的并且广域的网络来说,其管理是一个十分困难的过程,正因为这些因素从而决定了私钥算法的使用范围。而且,私钥加密算法不支持数字签名,这对远距离的传输来说也是一个障碍。另一个影响私钥的保密性的因素是算法的复杂性。现今为止,国际上比较通行的是DES、3DES以及最近推广的AES。
数据加密标准(Data Encryption Standard)是IBM公司1977年为美国政府研制的一种算法。DES是以56 位密钥为基础的密码块加密技术。它的加密过程一般如下:
① 一次性把64位明文块打乱置换。
② 把64位明文块拆成两个32位块;
③ 用机密DES密钥把每个32位块打乱位置16次;
④ 使用初始置换的逆置换。
但在实际应用中,DES的保密性受到了很大的挑战,1999年1月,EFF和分散网络用不到一天的时间,破译了56位的DES加密信息。DES的统治地位受到了严重的影响,为此,美国推出DES的改进版本-- 三重加密(triple Data Encryption Standard)即在使用过程中,收发双方都用三把密钥进行加解密,无疑这种3*56式的加密方法大大提升了密码的安全性,按现在的计算机的运算速度,这种破解几乎是不可能的。但是我们在为数据提供强有力的安全保护的同时,也要化更多的时间来对信息进行三次加密和对每个密层进行解密。同时在这种前提下,使用这种密钥的双发都必须拥有3个密钥,如果丢失了其中任何一把,其余两把都成了无用的密钥。这样私钥的数量一下又提升了3倍,这显然不是我们想看到的。于是美国国家标准与技术研究所推出了一个新的保密措施来保护金融交易。高级加密标准(Advanced Encryption Standard)美国国家技术标准委员会(NIST)在2000年10月选定了比利时的研究成果Rijndael作为AES的基础。Rijndael是经过三年漫长的过程,最终从进入候选的五种方案中挑选出来的。
AES内部有更简洁精确的数学算法,而加密数据只需一次通过。AES被设计成高速,坚固的安全性能,而且能够支持各种小型设备。AES与3DES相比,不仅是安全性能有重大差别,使用性能和资源有效利用上也有很大差别。虽然到现在为止,我还不了解AES的具体算法但是从下表可以看出其与3DES的巨大优越性。
还有一些其他的一些算法,如美国国家安全局使用的飞鱼(Skipjack)算法,不过它的算法细节始终都是保密的,所以外人都无从得知其细节类容;一些私人组织开发的取代DES的方案:RC2、RC4、RC5等。 面对在执行过程中如何使用和分享密钥及保持其机密性等问题,1975年Whitefield Diffe和Marti Hellman提出了公开的密钥密码技术的概念,被称为Diffie-Hellman技术。从此公钥加密算法便产生了。
由于采取了公共密钥,密钥的管理和分发就变得简单多了,对于一个n个用户的网络来说,只需要2n个密钥便可达到密度。同时使得公钥加密法的保密性全部集中在及其复杂的数学问题上,它的安全性因而也得到了保证。但是在实际运用中,公共密钥加密算法并没有完全的取代私钥加密算法。其重要的原因是它的实现速度远远赶不上私钥加密算法。又因为它的安全性,所以常常用来加密一些重要的文件。自公钥加密问世以来,学者们提出了许多种公钥加密方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题来分类,有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭圆曲线离散对数系统(ECC)和离散对数系统 (代表性的有DSA),下面就作出较为详细的叙述。
RSA算法是由罗纳多·瑞维斯特(Rivet)、艾迪·夏弥尔(Shamir)和里奥纳多·艾德拉曼(Adelman)联合推出的,RAS算法由此而得名。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。它得具体算法如下:
① 找两个非常大的质数,越大越安全。把这两个质数叫做P和Q。
② 找一个能满足下列条件得数字E:
A. 是一个奇数。
B. 小于P×Q。
C. 与(P-1)×(Q-1)互质,只是指E和该方程的计算结果没有相同的质数因子。
③ 计算出数值D,满足下面性质:((D×E)-1)能被(P-1)×(Q-1)整除。
公开密钥对是(P×Q,E)。
私人密钥是D。
公开密钥是E。
解密函数是:
假设T是明文,C是密文。
加密函数用公开密钥E和模P×Q;
加密信息=(TE)模P×Q。
解密函数用私人密钥D和模P×Q;
解密信息=(CD)模P×Q。
椭圆曲线加密技术(ECC)是建立在单向函数(椭圆曲线离散对数)得基础上,由于它比RAS使用得离散对数要复杂得多。而且该单向函数比RSA得要难,所以与RSA相比,它有如下几个优点:
安全性能更高 加密算法的安全性能一般通过该算法的抗攻击强度来反映。ECC和其他几种公钥系统相比,其抗攻击性具有绝对的优势。如160位 ECC与1024位 RSA有相同的安全强度。而210位 ECC则与2048bit RSA具有相同的安全强度。
计算量小,处理速度快 虽然在RSA中可以通过选取较小的公钥(可以小到3)的方法提高公钥处理速度,即提高加密和签名验证的速度,使其在加密和签名验证速度上与ECC有可比性,但在私钥的处理速度上(解密和签名),ECC远比RSA、DSA快得多。因此ECC总的速度比RSA、DSA要快得多。
存储空间占用小 ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
带宽要求低 当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。而公钥加密系统多用于短消息,例如用于数字签名和用于对对称系统的会话密钥传递。带宽要求低使ECC在无线网络领域具有广泛的应用前景。
ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。

Ⅳ 密码学系列之:bcrypt加密算法详解

简介

今天要给大家介绍的一种加密算法叫做bcrypt,bcrypt是由NielsProvos和DavidMazières设计的密码哈希函数,他是基于Blowfish密码而来的,并于1999年在USENIX上提出。

除了加盐来抵御rainbowtable攻击之外,bcrypt的一个非常重要的特征就是自适应性,可以保证加密的速度在一个特定的范围内,即使计算机的运算能力非常高,可以通过增加迭代次数的方式,使得加密速度变慢,从而可以抵御暴力搜索攻击。

bcrypt函数是OpenBSD和其他系统包括一些Linux发行版(如SUSELinux)的默认密码哈希算法。

bcrypt的工作原理

我们先回顾一下Blowfish的加密原理。blowfish首先需要生成用于加密使用的K数组和S-box,blowfish在生成最终的K数组和S-box需要耗费一定的时间,每个新的密钥都需要进行大概4KB文本的预处理,和其他分组密码算法相比,这个会很慢。但是一旦生成完毕,或者说密钥不变的情况下,blowfish还是很快速的一种分组加密方法。

那么慢有没有好处呢?

当然有,因为对于一个正常应用来说,是不会经常更换密钥的。所以预处理只会生成一次。在后面使用的时候就会很快了。

而对于恶意攻击者来说,每次尝试新的密钥都需要进行漫长的预处理,所以对攻击者来说要破解blowfish算法是非常不划算的。所以blowfish是可以抵御字典攻击的。

Provos和Mazières利用了这一点,并将其进一步发展。他们为Blowfish开发了一种新的密钥设置算法,将由此产生的密码称为"Eksblowfish"("expensivekeyscheleBlowfish")。这是对Blowfish的改进算法,在bcrypt的初始密钥设置中,salt和password都被用来设置子密钥。然后经过一轮轮的标准Blowfish算法,通过交替使用salt和password作为key,每一轮都依赖上一轮子密钥的状态。虽然从理论上来说,bcrypt算法的强度并不比blowfish更好,但是因为在bcrpyt中重置key的轮数是可以配置的,所以可以通过增加轮数来更好的抵御暴力攻击。

bcrypt算法实现

简单点说bcrypt算法就是对字符串OrpheanBeholderScryDoubt进行64次blowfish加密得到的结果。有朋友会问了,bcrypt不是用来对密码进行加密的吗?怎么加密的是一个字符串?

别急,bcrpyt是将密码作为对该字符串加密的因子,同样也得到了加密的效果。我们看下bcrypt的基本算法实现:

FunctionbcryptInput:cost:Number(4..31)log2(Iterations).e.g.12==>212=4,096iterationssalt:arrayofBytes(16bytes)randomsaltpassword:arrayofBytes(1..72bytes)UTF-8encodedpasswordOutput:hash:arrayofBytes(24bytes)////P:arrayof18subkeys(UInt32[18])//S:Foursubstitutionboxes(S-boxes),S0...S3.EachS-boxis1,024bytes(UInt32[256])P,S<-EksBlowfishSetup(cost,salt,password)//Repeatedlyencryptthetext"OrpheanBeholderScryDoubt"64timesctext<-"OrpheanBeholderScryDoubt"//24bytes==>three64-bitblocksrepeat(64)ctext<-EncryptECB(P,S,ctext)////24-(cost,salt,ctext)

上述函数bcrypt有3个输入和1个输出。

在输入部分,cost表示的是轮循的次数,这个我们可以自己指定,轮循次数多加密就慢。

salt是加密用盐,用来混淆密码使用。

password就是我们要加密的密码了。

最后的输出是加密后的结果hash。

有了3个输入,我们会调用EksBlowfishSetup函数去初始化18个subkeys和4个1K大小的S-boxes,从而达到最终的P和S。

然后使用P和S对"OrpheanBeholderScryDoubt"进行64次blowfish运算,最终得到结果。

接下来看下EksBlowfishSetup方法的算法实现:

FunctionEksBlowfishSetupInput:password:arrayofBytes(1..72bytes)UTF-8encodedpasswordsalt:arrayofBytes(16bytes)randomsaltcost:Number(4..31)log2(Iterations).e.g.12==>212=4,096iterationsOutput:P:arrayofUInt32arrayof18per-roundsubkeysS1..S4:;eachSBoxis256UInt32(i.e.1024KB)//InitializeP(Subkeys),andS(Substitutionboxes)withthehexdigitsofpiP,S<-InitialState()//,S<-ExpandKey(P,S,salt,password)//Thisisthe"Expensive"partofthe"ExpensiveKeySetup".//.repeat(2cost)P,S<-ExpandKey(P,S,0,password)P,S<-ExpandKey(P,S,0,salt)returnP,S

代码很简单,EksBlowfishSetup接收上面我们的3个参数,返回最终的包含18个子key的P和4个1k大小的Sbox。

首先初始化,得到最初的P和S。

然后调用ExpandKey,传入salt和password,生成第一轮的P和S。

然后循环2的cost方次,轮流使用password和salt作为参数去生成P和S,最后返回。

最后看一下ExpandKey的实现:

FunctionExpandKeyInput:password:arrayofBytes(1..72bytes)UTF-8encodedpasswordsalt:Byte[16]randomsaltP:..S4:UInt32[1024]Four1KBSBoxesOutput:P:arrayofUInt32Arrayof18per-roundsubkeysS1..S4:UInt32[1024]Four1KBSBoxes//<-1to18doPn<-Pnxorpassword[32(n-1)..32n-1]//treatthepasswordascyclic//Treatthe128-bitsaltastwo64-bithalves(theBlowfishblocksize).saltHalf[0]<-salt[0..63]//Lower64-bitsofsaltsaltHalf[1]<-salt[64..127]//Upper64-bitsofsalt//Initializean8-byte(64-bit)bufferwithallzeros.block<-0//MixinternalstateintoP-boxesforn<-1to9do//xor64-bitblockwitha64-bitsalthalfblock<-blockxorsaltHalf[(n-1)mod2]//[0],andsaltHalf[1]//<-Encrypt(P,S,block)P2n<-block[0..31]//lower32-bitsofblockP2n+1<-block[32..63]//upper32-bitsblock//-boxesofstatefori<-1to4doforn<-0to127doblock<-Encrypt(state,blockxorsalt[64(n-1)..64n-1])//asaboveSi[2n]<-block[0..31]//lower32-bitsSi[2n+1]<-block[32..63]//upper32-bitsreturnstate

ExpandKey主要用来生成P和S,算法的生成比较复杂,大家感兴趣的可以详细研究一下。

bcrypthash的结构

我们可以使用bcrypt来加密密码,最终以bcrypthash的形式保存到系统中,一个bcrypthash的格式如下:

$2b$[cost]$[22charactersalt][31characterhash]

比如:

$2a$10$\__//\____________________/\_____________________________/AlgCostSaltHash

上面例子中,$2a$表示的hash算法的唯一标志。这里表示的是bcrypt算法。

10表示的是代价因子,这里是2的10次方,也就是1024轮。

N9qo8uLOickgx2ZMRZoMye是16个字节(128bits)的salt经过base64编码得到的22长度的字符。

最后的是24个字节(192bits)的hash,经过bash64的编码得到的31长度的字符。

hash的历史

这种hash格式是遵循的是OpenBSD密码文件中存储密码时使用的MolarCryptFormat格式。最开始的时候格式定义是下面的:

$1$:MD5-basedcrypt('md5crypt')

$2$:Blowfish-basedcrypt('bcrypt')

$sha1$:SHA-1-basedcrypt('sha1crypt')

$5$:SHA-256-basedcrypt('sha256crypt')

$6$:SHA-512-basedcrypt('sha512crypt')

但是最初的规范没有定义如何处理非ASCII字符,也没有定义如何处理null终止符。修订后的规范规定,在hash字符串时:

String必须是UTF-8编码

必须包含null终止符

因为包含了这些改动,所以bcrypt的版本号被修改成了$2a$。

但是在2011年6月,因为PHP对bcypt的实现crypt_blowfish中的一个bug,他们建议系统管理员更新他们现有的密码数据库,用$2x$代替$2a$,以表明这些哈希值是坏的(需要使用旧的算法)。他们还建议让crypt_blowfish对新算法生成的哈希值使用头$2y$。当然这个改动只限于PHP的crypt_blowfish。

然后在2014年2月,在OpenBSD的bcrypt实现中也发现了一个bug,他们将字符串的长度存储在无符号char中(即8位Byte)。如果密码的长度超过255个字符,就会溢出来。

因为bcrypt是为OpenBSD创建的。所以当他们的库中出现了一个bug时,他们决定将版本号升级到$2b$。

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:“程序那些事”,懂技术,更懂你!

Ⅳ 数据库里加密的密码是怎么实现的

一般是先加盐再用不可逆加密算法加密密码的,常见的有:sha1 sha256 md5等。

作用:这些加密算法,只能加密,不能逆向解密,所以使用这些算法。即时你的数据库被拖库,得到的人,也无法知道用户密码。

为什么加盐

举例

在注册时,

假设你的密码是1234,一般服务器会加一个盐(随便一个乱打的字符串),和你的密码加在一起,1234和efnU*(@#H!JKNF得到1234efnU*(@#H!JKNF这个值,然后再进行加密(这里我用md5)得到 ,于是数据库里你的密码就变为了

登入时,

你输入1234, 然后服务器用和注册相同的步骤进行加密,得到加密后的值,,将这个值与数据库的加密值比对,如果正确则登入。

阅读全文

与数据加密算法的实现结果与分析相关的资料

热点内容
程序员放弃后会怎样 浏览:160
河北模具编程 浏览:178
adb查找命令 浏览:308
安卓手机视频文件夹怎么打开 浏览:302
平板加密手机后怎么关闭 浏览:557
流媒体服务器应该注意什么 浏览:528
d8命令编译 浏览:942
压缩包解压需要多少空间 浏览:139
如何查找app属性 浏览:380
android人脸识别技术 浏览:305
pc104编程 浏览:329
二维码反编译破解推广 浏览:674
修改服务器的mac地址 浏览:521
好玩的编程软件 浏览:892
编程语言创始人有钱吗 浏览:797
短视频app怎么获客 浏览:8
查看云服务器的应用 浏览:427
javadump工具 浏览:558
程序员16g 浏览:421
程序员没有办法成为top怎么办 浏览:196