导航:首页 > 文档加密 > ios常用的加密算法

ios常用的加密算法

发布时间:2022-04-20 11:40:45

⑴ 为什么ios系统显示我家wifi低安全性

家中一般路由器都是默认WAP-PSK/WPA2-PSK加密模式,加密算法AES/TKIP,所以很容易导致iPhone手机无线局域网连接网络成功后下方出现小字低安全性。

none不加密、WEP(很老的加密方式,新款路由器已经弃用了)、WPA-PSK(包括WPA-PSK-TKIP和WPA-PSK-AES)、WPA2-PSK(包括WPA2-PSK-TKIP和WPA2-PSK-AES)、WPA3-SAE、802.11xEAP(多是企业用这里不做考虑)。

简介

none(即不加密不设密码);WEP;WPA-PSK-TKIP或者WPA2-PSK-TKIP(这个是比较常用的加密方式,TKIP不支持802.11n及以上所以只是作为兼容老旧设备而用的,目前绝大多数路由器都是兼容TKIP和AES并存)。

不会提示WiFi安全性低的加密方式为:WPA/WPA2-PSK-AES以及更新的WPA3加密(这个WiFi6路由器才会有)。

⑵ ios md5加密原理是什么意思

MD5加密算法原理MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 1321中有详细的描述( http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IEFT提交。. .

⑶ iOS代码加密的几种方式

众所周知的是大部分iOS代码一般不会做加密加固,因为iOS
APP一般是通过AppStore发布的,而且苹果的系统难以攻破,所以在iOS里做代码加固一般是一件出力不讨好的事情。万事皆有例外,不管iOS、adr还是js,加密的目的是为了代码的安全性,虽然现在开源畅行,但是不管个人开发者还是大厂皆有保护代码安全的需求,所以iOS代码加固有了生存的土壤。下面简单介绍下iOS代码加密的几种方式。

iOS代码加密的几种方式

1.字符串加密

字符串会暴露APP的很多关键信息,攻击者可以根据从界面获取的字符串,快速找到相关逻辑的处理函数,从而进行分析破解。加密字符串可以增加攻击者阅读代码的难度以及根据字符串静态搜索的难度。

一般的处理方式是对需要加密的字符串加密,并保存加密后的数据,再在使用字符串的地方插入解密算法。简单的加密算法可以把NSString转为byte或者NSData的方式,还可以把字符串放到后端来返回,尽量少的暴露页面信息。下面举个简单例子,把NSString转为16进制的字符串:

2.符号混淆

符号混淆的中心思想是将类名、方法名、变量名替换为无意义符号,提高应用安全性;防止敏感符号被class-mp工具提取,防止IDA Pro等工具反编译后分析业务代码。目前市面上的IOS应用基本上是没有使用类名方法名混淆的。

⑷ ios开发中aes加密填充字节iv怎么填充

之前在项目上用到AES256加密解密算法,刚开始在java端加密解密都没有问题,在iOS端加密解密也没有问题。但是奇怪的是在java端加密后的文件在iOS端无法正确解密打开,然后简单测试了一下,发现在java端和iOS端采用相同明文,相同密钥加密后的密文不一样!上网查了资料后发现iOS中AES加密算法采用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我们知道加密算法由算法+模式+填充组成,所以这两者不同的填充算法导致相同明文相同密钥加密后出现密文不一致的情况。那么我们需要在java中用PKCS7Padding来填充,这样就可以和iOS端填充算法一致了。
要实现在java端用PKCS7Padding填充,需要用到bouncycastle组件来实现,下面我会提供该包的下载。啰嗦了一大堆,下面是一个简单的测试,上代码!
001 package com.encrypt.file;
002
003
004 import java.io.UnsupportedEncodingException;
005 importjava.security.Key;
006 import java.security.Security;
007
008 importjavax.crypto.Cipher;
009 importjavax.crypto.SecretKey;
010 importjavax.crypto.spec.SecretKeySpec;
011
012 public classAES256Encryption{
013
014 /**
015 * 密钥算法
016 * java6支持56位密钥,bouncycastle支持64位
017 * */
018 public static finalString KEY_ALGORITHM="AES";
019
020 /**
021 * 加密/解密算法/工作模式/填充方式
022 *
023 * JAVA6 支持PKCS5PADDING填充方式
024 * Bouncy castle支持PKCS7Padding填充方式
025 * */
026 public static finalString CIPHER_ALGORITHM="AES/ECB/PKCS7Padding";
027
028 /**
029 *
030 * 生成密钥,java6只支持56位密钥,bouncycastle支持64位密钥
031 * @return byte[] 二进制密钥
032 * */
033 public static byte[] initkey() throwsException{
034
035 // //实例化密钥生成器
036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");
038 // //初始化密钥生成器,AES要求密钥长度为128位、192位、256位
039 //// kg.init(256);
040 // kg.init(128);
041 // //生成密钥
042 // SecretKey secretKey=kg.generateKey();
043 // //获取二进制密钥编码形式
044 // return secretKey.getEncoded();
045 //为了便于测试,这里我把key写死了,如果大家需要自动生成,可用上面注释掉的代码
046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,
047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,
048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,
049 0x06, 0x07, 0x09, 0x0d };
050 }
051
052 /**
053 * 转换密钥
054 * @param key 二进制密钥
055 * @return Key 密钥
056 * */
057 public static Key toKey(byte[] key) throwsException{
058 //实例化DES密钥
059 //生成密钥
060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);
061 returnsecretKey;
062 }
063
064 /**
065 * 加密数据
066 * @param data 待加密数据
067 * @param key 密钥
068 * @return byte[] 加密后的数据
069 * */
070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{
071 //还原密钥
072 Key k=toKey(key);
073 /**
074 * 实例化
075 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现
076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
077 */
078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");
080 //初始化,设置为加密模式
081 cipher.init(Cipher.ENCRYPT_MODE, k);
082 //执行操作
083 returncipher.doFinal(data);
084 }
085 /**
086 * 解密数据
087 * @param data 待解密数据
088 * @param key 密钥
089 * @return byte[] 解密后的数据
090 * */
091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{
092 //欢迎密钥
093 Key k =toKey(key);
094 /**
095 * 实例化
096 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现
097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
098 */
099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);
100 //初始化,设置为解密模式
101 cipher.init(Cipher.DECRYPT_MODE, k);
102 //执行操作
103 returncipher.doFinal(data);
104 }
105 /**
106 * @param args
107 * @throws UnsupportedEncodingException
108 * @throws Exception
109 */
110 public static void main(String[] args) {
111
112 String str="AES";
113 System.out.println("原文:"+str);
114
115 //初始化密钥
116 byte[] key;
117 try {
118 key = AES256Encryption.initkey();
119 System.out.print("密钥:");
120 for(int i = 0;i<key.length;i++){
121 System.out.printf("%x", key[i]);
122 }
123 System.out.print("\n");
124 //加密数据
125 byte[] data=AES256Encryption.encrypt(str.getBytes(), key);
126 System.out.print("加密后:");
127 for(int i = 0;i<data.length;i++){
128 System.out.printf("%x", data[i]);
129 }
130 System.out.print("\n");
131
132 //解密数据
133 data=AES256Encryption.decrypt(data, key);
134 System.out.println("解密后:"+newString(data));
135 } catch (Exception e) {
136 // TODO Auto-generated catch block
137 e.printStackTrace();
138 }
139
140 }
141 }

⑸ ios 中开发中用户信息中的加密方式有哪些

5.1 通过简单的URLENCODE + BASE64编码防止数据明文传输
5.2 对普通请求、返回数据,生成MD5校验(MD5中加入动态密钥),进行数据完整性(简单防篡改,安全性较低,优点:快速)校验。
5.3 对于重要数据,使用RSA进行数字签名,起到防篡改作用。
5.4 对于比较敏感的数据,如用户信息(登陆、注册等),客户端发送使用RSA加密,服务器返回使用DES(AES)加密。
原因:客户端发送之所以使用RSA加密,是因为RSA解密需要知道服务器私钥,而服务器私钥一般盗取难度较大;如果使用DES的话,可以通过破解客户端获取密钥,安全性较低。而服务器返回之所以使用DES,是因为不管使用DES还是RSA,密钥(或私钥)都存储在客户端,都存在被破解的风险,因此,需要采用动态密钥,而RSA的密钥生成比较复杂,不太适合动态密钥,并且RSA速度相对较慢,所以选用DES)
把相关算法的代码也贴一下吧 (其实使用一些成熟的第三方库或许会来得更加简单,不过自己写,自由点)。注,这里的大部分加密算法都是参考一些现有成熟的算法,或者直接拿来用的。
1、MD5
//因为是使用category,所以木有参数传入啦

-(NSString *) stringFromMD5 {
if(self == nil || [self length] == 0) {
return nil;
}
const char *value = [self UTF8String];
unsigned char outputBuffer[CC_MD5_DIGEST_LENGTH];
CC_MD5(value, strlen(value), outputBuffer);
NSMutableString *outputString = [[NSMutableString alloc] initWithCapacity:CC_MD5_DIGEST_LENGTH * 2];
for(NSInteger count = 0; count < CC_MD5_DIGEST_LENGTH; count++){
[outputString appendFormat:@"%02x",outputBuffer[count]];
}
return [outputString autorelease];
}

2、Base64

+ (NSString *) base64EncodeData: (NSData *) objData {
const unsigned char * objRawData = [objData bytes];
char * objPointer;
char * strResult;

// Get the Raw Data length and ensure we actually have data
int intLength = [objData length];
if (intLength == 0) return nil;

// Setup the String-based Result placeholder and pointer within that placeholder
strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
objPointer = strResult;

// Iterate through everything
while (intLength > 2) { // keep going until we have less than 24 bits
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];

// we just handled 3 octets (24 bits) of data
objRawData += 3;
intLength -= 3;
}

// now deal with the tail end of things
if (intLength != 0) {
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
if (intLength > 1) {
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
*objPointer++ = '=';
} else {
*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
*objPointer++ = '=';
*objPointer++ = '=';
}
}

// Terminate the string-based result
*objPointer = '\0';

NSString *rstStr = [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
free(objPointer);
return rstStr;
}

3、AES
-(NSData*) EncryptAES: (NSString *) key {
char keyPtr[kCCKeySizeAES256+1];
bzero(keyPtr, sizeof(keyPtr));

[key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

NSUInteger dataLength = [self length];

size_t bufferSize = dataLength + kCCBlockSizeAES128;
void *buffer = malloc(bufferSize);

size_t numBytesEncrypted = 0;
CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128,
kCCOptionPKCS7Padding | kCCOptionECBMode,
keyPtr, kCCBlockSizeAES128,
NULL,
[self bytes], dataLength,
buffer, bufferSize,
&numBytesEncrypted);
if (cryptStatus == kCCSuccess) {
return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];
}

free(buffer);
return nil;
}

4、RSA

- (NSData *) encryptWithData:(NSData *)content {
size_t plainLen = [content length];
if (plainLen > maxPlainLen) {
NSLog(@"content(%ld) is too long, must < %ld", plainLen, maxPlainLen);
return nil;
}

void *plain = malloc(plainLen);
[content getBytes:plain
length:plainLen];

size_t cipherLen = 128; // currently RSA key length is set to 128 bytes
void *cipher = malloc(cipherLen);

OSStatus returnCode = SecKeyEncrypt(publicKey, kSecPaddingPKCS1, plain,
plainLen, cipher, &cipherLen);

NSData *result = nil;
if (returnCode != 0) {
NSLog(@"SecKeyEncrypt fail. Error Code: %ld", returnCode);
}
else {
result = [NSData dataWithBytes:cipher
length:cipherLen];
}

free(plain);
free(cipher);

return result;
}

⑹ 关于iOS aes256加密的问题,请各位帮忙,搞了一个星期,急求答案!

之前在项目上用到AES256加密解密算法,刚开始在java端加密解密都没有问题,在iOS端加密解密也没有问题。但是奇怪的是在java端加密后的文件在iOS端无法正确解密打开,然后简单测试了一下,发现在java端和iOS端采用相同明文,相同密钥加密后的密文不一样!上网查了资料后发现iOS中AES加密算法采用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我们知道加密算法由算法+模式+填充组成,所以这两者不同的填充算法导致相同明文相同密钥加密后出现密文不一致的情况。那么我们需要在java中用PKCS7Padding来填充,这样就可以和iOS端填充算法一致了。
要实现在java端用PKCS7Padding填充,需要用到bouncycastle组件来实现,下面我会提供该包的下载。啰嗦了一大堆,下面是一个简单的测试,上代码!
001 package com.encrypt.file;
002
003
004 import java.io.UnsupportedEncodingException;
005 importjava.security.Key;
006 import java.security.Security;
007
008 importjavax.crypto.Cipher;
009 importjavax.crypto.SecretKey;
010 importjavax.crypto.spec.SecretKeySpec;
011
012 public classAES256Encryption{
013
014 /**
015 * 密钥算法
016 * java6支持56位密钥,bouncycastle支持64位
017 * */
018 public static finalString KEY_ALGORITHM="AES";
019
020 /**
021 * 加密/解密算法/工作模式/填充方式
022 *
023 * JAVA6 支持PKCS5PADDING填充方式
024 * Bouncy castle支持PKCS7Padding填充方式
025 * */
026 public static finalString CIPHER_ALGORITHM="AES/ECB/PKCS7Padding";
027
028 /**
029 *
030 * 生成密钥,java6只支持56位密钥,bouncycastle支持64位密钥
031 * @return byte[] 二进制密钥
032 * */
033 public static byte[] initkey() throwsException{
034
035 // //实例化密钥生成器
036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");
038 // //初始化密钥生成器,AES要求密钥长度为128位、192位、256位
039 //// kg.init(256);
040 // kg.init(128);
041 // //生成密钥
042 // SecretKey secretKey=kg.generateKey();
043 // //获取二进制密钥编码形式
044 // return secretKey.getEncoded();
045 //为了便于测试,这里我把key写死了,如果大家需要自动生成,可用上面注释掉的代码
046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,
047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,
048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,
049 0x06, 0x07, 0x09, 0x0d };
050 }
051
052 /**
053 * 转换密钥
054 * @param key 二进制密钥
055 * @return Key 密钥
056 * */
057 public static Key toKey(byte[] key) throwsException{
058 //实例化DES密钥
059 //生成密钥
060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);
061 returnsecretKey;
062 }
063
064 /**
065 * 加密数据
066 * @param data 待加密数据
067 * @param key 密钥
068 * @return byte[] 加密后的数据
069 * */
070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{
071 //还原密钥
072 Key k=toKey(key);
073 /**
074 * 实例化
075 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现
076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
077 */
078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");
080 //初始化,设置为加密模式
081 cipher.init(Cipher.ENCRYPT_MODE, k);
082 //执行操作
083 returncipher.doFinal(data);
084 }
085 /**
086 * 解密数据
087 * @param data 待解密数据
088 * @param key 密钥
089 * @return byte[] 解密后的数据
090 * */
091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{
092 //欢迎密钥
093 Key k =toKey(key);
094 /**
095 * 实例化
096 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现
097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
098 */
099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);
100 //初始化,设置为解密模式
101 cipher.init(Cipher.DECRYPT_MODE, k);
102 //执行操作
103 returncipher.doFinal(data);
104 }
105 /**
106 * @param args
107 * @throws UnsupportedEncodingException
108 * @throws Exception
109 */
110 public static void main(String[] args) {
111
112 String str="AES";
113 System.out.println("原文:"+str);
114
115 //初始化密钥
116 byte[] key;
117 try {
118 key = AES256Encryption.initkey();
119 System.out.print("密钥:");
120 for(int i = 0;i<key.length;i++){
121 System.out.printf("%x", key[i]);
122 }
123 System.out.print("\n");
124 //加密数据
125 byte[] data=AES256Encryption.encrypt(str.getBytes(), key);
126 System.out.print("加密后:");
127 for(int i = 0;i<data.length;i++){
128 System.out.printf("%x", data[i]);
129 }
130 System.out.print("\n");
131
132 //解密数据
133 data=AES256Encryption.decrypt(data, key);
134 System.out.println("解密后:"+newString(data));
135 } catch (Exception e) {
136 // TODO Auto-generated catch block
137 e.printStackTrace();
138 }
139
140 }
141 }
运行程序后的结果截图:

ViewController.m文件

01 //
02 // ViewController.m
03 // AES256EncryptionDemo
04 //
05 // Created by 孙 裔 on 12-12-13.
06 // Copyright (c) 2012年 rich sun. All rights reserved.
07 //
08
09 #import "ViewController.h"
10 #import "EncryptAndDecrypt.h"
11
12 @interface ViewController ()
13
14 @end
15
16 @implementation ViewController
17 @synthesize plainTextField;
18 - (void)viewDidLoad
19 {
20 [super viewDidLoad];
21 // Do any additional setup after loading the view, typically from a nib.
22 }
23
24 - (void)didReceiveMemoryWarning
25 {
26 [super didReceiveMemoryWarning];
27 // Dispose of any resources that can be recreated.
28 }
29 //这个函数实现了用户输入完后点击视图背景,关闭键盘
30 - (IBAction)backgroundTap:(id)sender{
31 [plainTextField resignFirstResponder];
32 }
33
34 - (IBAction)encrypt:(id)sender {
35
36 NSString *plainText = plainTextField.text;//明文
37 NSData *plainTextData = [plainText dataUsingEncoding:NSUTF8StringEncoding];
38
39 //为了测试,这里先把密钥写死
40 Byte keyByte[] = {0x08,0x08,0x04,0x0b,0x02,0x0f,0x0b,0x0c,0x01,0x03,0x09,0x07,0x0c,0x03,
41 0x07,0x0a,0x04,0x0f,0x06,0x0f,0x0e,0x09,0x05,0x01,0x0a,0x0a,0x01,0x09,
42 0x06,0x07,0x09,0x0d};
43 //byte转换为NSData类型,以便下边加密方法的调用
44 NSData *keyData = [[NSData alloc] initWithBytes:keyByte length:32];
45 //
46 NSData *cipherTextData = [plainTextData AES256EncryptWithKey:keyData];
47 Byte *plainTextByte = (Byte *)[cipherTextData bytes];
48 for(int i=0;i<[cipherTextData length];i++){
49 printf("%x",plainTextByte[i]);
50 }
51
52 }
53 @end

附上出处链接:http://blog.csdn.net/pjk1129/article/details/8489550

⑺ iOS 开发中都会使用哪些算法

很少需要自己来写算法和数据结构,基本的算法和数据结构都已经集成到库中了。但需要你了解各种算法和数据结构的不同,以便选择适当的库。比如各种排序、查找、字典、数组,是经常用到的。
假如连最基本的算法和数据结构的知识都没有,就算是写一些界面逻辑代码,也经常有性能问题。举个例子,有一个很大的消息列表按照时间排序,而有新的 20 条消息来了,有些人完全无意识地,将 20 条消息一条条依次在一个大数组前面逐个插入,这样就会引起数组的重复移动。这样的代码初看起来逻辑也正确,但就会很慢。
一个稍微严肃一点的 iOS 程序,经常用到三种语言,Swift 编写看得见的界面,C++ 编写看不见的底层,而 Objective-C 用于界面和底层之间的相互调用穿透。
但很多人理解的 iOS 开发,就仅仅只是界面、动画之类的看得见的东西。在界面之下有很多看不见的更深层的东西。这些就需要算法和数据结构知识。比如需要写一个绘图软件,照相磨皮软件,就涉及到图形算法。一个录音声音处理,就需要处理声音的波形。一个电子书软件就涉及到排版。一个类似 Flipboard 的内容聚合软件就涉及网页的抽取。
当然上述的很多算法和数据结构不需要自己来写,但假如完全没有这方面的知识,就算有库用了,但很可能连怎么使用也不会。比如最基本的图形学知识,矩阵都不知道,OpenGL 接口是不会用的。

⑻ ios加密方式,常用的加密方式

被拒的原因有以下这些: 1. 条款和条件 1.1 为App Store开发程序,开发者必须遵守 Program License Agreement (PLA)、人机交互指南(HIG)以及开发者和苹果签订的任何协议和合同。以下规则和示例旨在帮助开发者的程序能获得App Store的认可

⑼ IOS中怎么做RSA加密算法

RSA加密以及解密实现步骤:

1、使用openssl生成密匙对。

代码如下:(代码源于github开源社区)

#!/usr/bin/envbash
echo"GeneratingRSAkeypair..."
echo"1024RSAkey:private_key.pem"
opensslgenrsa-outprivate_key.pem1024

echo":rsaCertReq.csr"
opensslreq-new-keyprivate_key.pem-outrsaCertReq.csr

echo"createcertificationusingx509:rsaCert.crt"
opensslx509-req-days3650-inrsaCertReq.csr-signkeyprivate_key.pem-outrsaCert.crt

echo"createpublic_key.derForIOS"
opensslx509-outformder-inrsaCert.crt-outpublic_key.der

echo"createprivate_key.p12ForIOS.Pleaserememberyourpassword.ThepasswordwillbeusediniOS."
opensslpkcs12-export-outprivate_key.p12-inkeyprivate_key.pem-inrsaCert.crt

echo"creatersa_public_key.pemForJava"
opensslrsa-inprivate_key.pem-outrsa_public_key.pem-pubout
echo"createpkcs8_private_key.pemForJava"
opensslpkcs8-topk8-inprivate_key.pem-outpkcs8_private_key.pem-nocrypt

echo"finished."

2、加载证书后即可进行加密算法。

代码:

RSAEncryptor*rsa=[[RSAEncryptoralloc]init];

NSLog(@"encryptorusingrsa");
NSString*publicKeyPath=[[NSBundlemainBundle]pathForResource:@"public_key"ofType:@"der"];
NSLog(@"publickey:%@",publicKeyPath);
[rsaloadPublicKeyFromFile:publicKeyPath];

NSString*securityText=@"hello~";
NSString*encryptedString=[rsarsaEncryptString:securityText];
NSLog(@"encrypteddata:%@",encryptedString);

对应解密代码:

NSLog(@"decryptorusingrsa");
[rsaloadPrivateKeyFromFile:[[NSBundlemainBundle]pathForResource:@"private_key"ofType:@"p12"]password:@"123456"];
NSString*decryptedString=[rsarsaDecryptString:encryptedString];
NSLog(@"decrypteddata:%@",decryptedString);

RSA基本原理:

RSA使用"秘匙对"对数据进行加密解密.在加密解密数据前,需要先生成公钥(public key)和私钥(private key)。

公钥(public key): 用于加密数据. 用于公开, 一般存放在数据提供方, 例如iOS客户端。

私钥(private key): 用于解密数据. 必须保密, 私钥泄露会造成安全问题。

阅读全文

与ios常用的加密算法相关的资料

热点内容
rpgxp手机编程工具 浏览:331
小米电视4谷歌服务器地址 浏览:593
复杂驱动程序编译 浏览:501
西门子数控车床编程指令 浏览:615
华为手机电池有没有加密 浏览:221
域名查询被墙源码 浏览:678
电脑文件夹压缩包格式 浏览:67
安卓堆糖怎么保存 浏览:358
multisim中单片机 浏览:603
加密电梯卡怎么复制到苹果手机上 浏览:304
php获取数据类型 浏览:915
新概念c51单片机 浏览:326
删除文件的命令行 浏览:981
java编程软件eclipse 浏览:198
番茄app怎么完成签约流程 浏览:725
ibm服务器如何进u盘启动 浏览:185
网络驱动重启命令 浏览:446
入职联想程序员 浏览:155
linux拷贝目录下所有文件 浏览:46
androidwebview测试 浏览:234