1. 压缩感知是什么
压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
2. 什么是“压缩感知”
压缩感知,又称压缩采样,压缩传感。英文为Compressed Sampling、 Compressive Sening或者是Compressed sensing。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
3. 求助翻译
Radar one-dimensional distance of radial structure characteristics such as target, it is widely used in the study of target recognition. Compression perception can use less sampled data reconstruction the original signal, therefore, will be compressed as perception and radar one-dimensional distance, combining with less data identification is to study a method of radar target. This article elaborates the use of compressed sense, and the significance and the goal based on compression perception of the important significance as one-dimensional distance; Then reviews the development of important historical, introced in recent years the perception of imaging studies compressed development; Then the perception of various typical algorithms compression are introced, the analysis for the compression perception and data acquisition method provides relevant theoretical background. Secondly, the principle of compression perception, says the relevant sampling sparse, signal recovery related theory is briefly introced, and also explained some perception of target scattering compression based extract and contains some central operational methods. Finally achieved as the reconstruction of the one-dimensional distance.
4. 压缩感知的展望
非线性测量的压缩感知。讲压缩感知解决的线性逆问题推广到非线性函数参数的求解问题。广义的讲,非线性测量的压缩感知,可以包括以前的测量矩阵不确定性问题,量化误差问题,广义线性模型问题,有损压缩样本问题。
压缩感知在矩阵分解中的推广应用。主成分分析,表示字典学习,非负矩阵分解,多维度向量估计,低秩或高秩矩阵恢复问题。
确定性测量矩阵的设计问题。 随机矩阵在实用上存在难点。随机矩阵满足的RIP是充分非必要条件。在实际中,稀疏表示矩阵和随机矩阵相乘的结果才是决定稀疏恢复性能字典。
传统压缩感知是以稀疏结构为先验信息来进行信号恢复。当前最新进展显示数据中存在的其他的简单代数结果也作为先验信息进行信号估计。联合开发这些信号先验信息,将进一步提高压缩感知的性能。
5. 压缩感知的图像处理与应用有哪些
数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.
6. 如何解决基不匹配问题:从原子范数到无网格压缩感知
更好的求解方法应该是连续建模法, 即在对稀疏域建模时直接采用连续处理方法, 而不对稀疏域进行离散化表示, 在一般的稀疏分析中, 都直接采用定义在l2 空间的范数来度量稀疏参数. 要避免离散化处理, 最根本的方法是将范数定义在连续空间中, 这样就从源头上避免了基不匹配问题的发生. 原子范数利用原子集合凸包的连续特性来计算范数, 能够在约束信号稀疏特性的同时保证其参数空间的连续性。
7. 压缩感知的历史背景
尽管压缩感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科学家于2004 年提出的。但是早在上个世纪,相关领域已经有相当的理论和应用铺垫,包括图像处理、地球物理、医学成像、计算机科学、信号处理、应用数学等。
可能第一个与稀疏信号恢复有关的算法由法国数学家Prony 提出。这个被称为的Prony 方法的稀疏信号恢复方法可以通过解一个特征值问题,从一小部分等间隔采样的样本中估计一个稀疏三角多项式的非零幅度和对应的频率。而最早采用基于L1范数最小化的稀疏约束的人是B. Logan。他发现在数据足够稀疏的情况下,通过L1范数最小化可以从欠采样样本中有效的恢复频率稀疏信号。D. Donoho和B.Logan 是信号处理领域采用L1范数最小化稀疏约束的先驱。但是地球物理学家早在20 世纪七八十年代就开始利用L1范数最小化来分析地震反射信号了。上世纪90 年代,核磁共振谱处理方面提出采用稀疏重建方法从欠采样非等间隔样本中恢复稀疏Fourier 谱。同一时期,图像处理方面也开始引入稀疏信号处理方法进行图像处理。在统计学方面,使用L1范数的模型选择问题和相关的方法也在同期开始展开。
压缩感知理论在上述理论的基础上,创造性的将L1范数最小化稀疏约束与随机矩阵结合,得到一个稀疏信号重建性能的最佳结果。
压缩感知基于信号的可压缩性, 通过低维空间、低分辨率、欠Nyquist采样数据的非相关观测来实现高维信号的感知,丰富了关于信号恢复的优化策略,极大的促进了数学理论和工程应用的结合 。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。
8. 什么是“压缩感知”(压缩传感、compressed/compressive sensing)
压缩感知(Compressive Sensing, or Compressed Sampling,简称CS),是近几年流行起来的一个介于数学和信息科学的新方向,由Candes、Terres Tao等人提出,挑战传统的采样编码技术,即Nyquist采样定理。
压缩感知技术-理论
压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。
压缩感知技术-概念特征
压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。 稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等。而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求。也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了。 压缩感知的概念就是为了解决这样的矛盾而产生的。既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接“采集”压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的“压缩感知”,也就是说,直接感知压缩了的信息。
压缩感知技术-应用影响
在大量的实际问题中,人们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和人们所希望重建的信息之间有某种全局性的变换关系,并且人们预先知道那些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展地非常广泛了。 但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国Rice大学的一部分科学家正在试图开发一种新的摄影装置(被称为“单像素照相机”),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件(也就是说有数学方法保证能够从不完整的数据中还原出信号)无法得到满足。这种时候,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。 但是无论如何,压缩感知所代表的基本思路:从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。
复制的。。。。。
9. 西安文理学院学报的杂志目录
基于磁致双折射的多频率隐身斗篷 于正阳周源源
(6)基于压缩感知的稀疏谱估计方法研究杨森林崇鑫
(10)基于LS—SVM的NBA前锋/中锋球员综合能力评价刘国璧孙群赵姝
(15)基于聚类的直线特征提取算法仿真研究雒伟群王聪华赵尔平何磊
(20)光谱成像光学系统的初步实验研究赵小侠罗文峰李院院
(23)叶面喷施奇善宝对长旱58小麦品种产量及品质的影响陈银潮张睿李淑林王燕赵小明
(26)崭新蝴蝶分类之研究——中国蝴蝶研究最新成果寿建新
(33)中国成年人血浆内皮素含量参考值的地理分布规律努尔阿米娜·艾海提葛淼周文华
(38)大型实对称特征值问题的块Jacobi-Davidson方法的不精确求解谭静汪晓红
(45)一次Diophantine方程的整数解万飞杜先存
(49)一类指数型函数Riccati微分方程通解的求法王建锋李先枝
(51)加权KyFan差函数的单调性及有关不等式胡博王明建
(55)加权KyFan商函数的单调性和有关的几个不等式巴玉强王明建
(59)变数的应用田浩尚向荣
(64)动载荷作用下的弹塑性微弯裂纹J积分吴凤珍杨大鹏
(68)最小二乘法及其在大地变形反演问题中的应用陈军红
(71)带有马尔可夫跳跃并具有模式依赖的时滞离散神经网络的鲁棒指数稳定性分析康卫李林国
(75)用于JPEG图像的局部区域选择隐写算法刘辉李林国
(80)三维建模与三维动画仿真技术的研究与应用刘向晖
(84)基于ARP欺骗的网络攻击分析及防范韩利凯
(87)基于无线传感器网络的数据采集系统设计燕莎刘强辉
(91)一体化美化天线在TD—SCDMA网络中的应用研究林莉娅
(96)基于GSM与单片机的无线抄表系统刘强辉燕莎