A. 空压机的工作原理。
空气压缩机工作原理:驱动机启动后,经三角胶带,带动压缩机曲轴旋转,通过曲柄杆机构转化为活塞在气缸内作往复运动。
B. 空分工艺流程有哪些
大气通过自洁式空气过滤器被空压机吸入。压缩空气冷却后进入预冷系统冷却,送入分子筛纯化器去除掉空气中的二氧化碳和碳氢等有害杂质。清洁空气然后送入冷箱,进入主换热器被反流气体冷却到流程所需的温度。一部分冷却后的空气进入膨胀机膨胀制冷。膨胀后的空气进入分流塔,或主换热器复热。剩余空气进入分流塔进行低温分离。分离后的氧气、氮气和废弃经主换热器复热后出冷箱。废气出冷箱后进纯化器再生分子筛,还有一部分废气进预冷系统提供冷量。
几乎每套空分设备的流程都不相同。流程是空分厂家根据产品气液状态、设备规模、氧氮比例、投资规模、能耗要求等很多因素设计的,不存在一个统一的规范。 总的原理就是预冷系统将压缩后的热空气预冷,然后纯化系统去除有害杂质,然后进冷箱。 冷箱里面,通过膨胀机制冷,通过换热器进行各股气体之间的热交换达到工艺要求的温度,通过分流塔和主冷进行空气分离。
以上纯手工输入,如还有问题欢迎随时来问。
C. 高压空气压缩机工艺流程是怎么样的
网络很强大,您可以直接网络一下高压空气压缩机工艺流程panny。
D. 压缩空气供应
在地下工程施工中,以压缩空气为动力的风动机具主要有凿岩机、装碴机、喷混凝土机、锻钎机、压浆机等。
压缩空气是由空气压缩机生产,并通过高压风管输送给风动机具的。
压缩空气的供应主要应考虑供应足够的风量以及必需的工作风压,尽量减少压缩空气在管路输送过程中的损失,从而达到节约能源、降低消耗的目的。
一、技术要求
(1)空压机站应提供能满足各种风动机械(具)设备正常运转及输送损耗所需要的风量。
(2)空压机站一般应靠近洞口,与铺设的高压风管路同侧,并注意防洪、防火、防爆破,机房要求地形宽敞,通风良好,地基坚固。
(3)高压风管的管径能满足施工高峰期最大供风量的需求;管路铺设时应尽量减少风压损失。
二、压缩空气供应工艺流程
压缩空气供应工艺流程如图10-3 所示。
图10-3 压缩空气供应工艺流程图
三、供风量的计算
供风量的大小可根据下式计算:
地下建筑工程施工
式中:n为同时使用的各种风动机械(具)的台数;q1为每台风动机械(具)的耗风量,可查阅有关机械手册,m3/min;k1为因机械磨损而使用风量增大的系数,取k1=1.2~1.3;c 为同时工作系数,如表10-4 所示;L 为高压风输送管路的理论长度,即实际铺设的管路长度与配件折算的管路长度之和(配件折算成管路长度查有关机械手册),km;a为每 1km高压风管在单位时间内的漏风量,取a=1.5~2.0m3/km·min。
表10-4 各种机械(具)同时工作系数值c
风镐和凿岩机同时工作系数
四、空压机站
为安装空压机,地下工程施工一般都需在地面设置空压机站,将空压机安装在站房内,如图10-4 所示。隧道施工时应设在洞口附近,并宜靠近变电站,应有防水、降温、保温和防雷击设施。如有多个洞口共用一个空压机站时可选在适中位置,但也应靠近用风量较大的洞口。地下矿山施工时,空压机站设在地面井口附近,尽量不超过 50m;应选择在空气清洁、通风良好的位置,与矸石山、出风井口、烟囱等距离不应小于 150m,并位于全井主导风向的上风方向。
图10-4 空压机站布置图
1—空压机;2—电动机;3—风包;4—过滤器;5—水泵;6—水池;7—电控设备
空压机站主要有空压机、配电设备、储风缸(俗称风包,用于均衡风压及排泄高压风中的油和水)、送风管及其配件、循环水池(用于冷却空压机)等组成。空压机按动力来源可分为电动和内燃两种。短隧道可采用移动式内燃空压机,长隧道可采用固定式大型电动空压机。
空压机所配置的台数应按下式计算确定:
地下建筑工程施工
式中:Q供为计算供风量,按式(10-4)计算;q2为台空压机生产的能力;u为海拔高度对空压机生产能力影响的折减系数,见表10-5;k2为空压机磨损引起效率降低的修正系数,取k2=1.05~1.10;k3为备用系数,取k3=1.3~1.5。
空压机的种类很多,按可移动性分有固定式和移动式两种,按动力来源分为电动和内燃两种,按工作原理分活塞式、螺杆式、滑片式、离心式、隔膜式等。短隧道施工多采用移动式内燃空气压缩机,长隧道、矿井施工多采用固定式大型电动空气压缩机。
表10-5 海拔高度影响折减系数
空压机组采用并列式布置,两空压机之间的净距不小于 1.5m。此外,还应考虑空压机出入、调换、加油、加水等方便。
五、高压风管
高压风管应采用经久耐用,容易维修和更换的镀锌钢管。
1.高压风管管径
高压风管管径应根据可能出现的最大风量和容许的最大风压损失来确定。
送风管末端的风压不小于0.6Mpa,以保证高压风通过胶管到达风动机械(具)后仍能保持0.5Mpa的风压,即风压损失Δp=0.1Mpa。
高压风管管径选择可按下列步骤进行:
(1)计算出送风管路最大的理论长度;
(2)根据最大供风量及送风管管路最大的理论长度,由表10-6 查得风管直径;
(3)根据查得的风管直径及最大供风量,查相关设计手册得出风压损失Δp 值,当Δp≤0.1Mpa时,则查得的风管直径即可使用,否则必须将风管直径加大一级,并按上述步骤重新选取,直至满足要求为止。
表10-6 允许通过风量与管径、管长关系
注:本表系按送风管始端风压为0.7MPa,钢管末端风压为0.6MPa,即风压通过管路的损失为0.1MPa。
2.高压风管管路铺设要求
(1)管路铺设时应做到平、顺、直,接头严密,架设牢固。
(2)有平行导坑的隧道,主风管路一般布置在平行导坑内横通道对面一侧,支管路从横通道到正洞。
(3)独头巷道的隧道,风管应位于水沟异侧。
(4)有计划地安装洞内支管路及闸阀,做到既满足各工点施工需要,又尽量减少管路配件数量。
(5)主风管路设在距工作面30~40m处,其末端配有分风器用的Φ50~Φ75mm高压胶管。风枪用的高压胶管一般为Φ19mm,其长度不超过 10m。
(6)严寒地区的洞外管路应采取防冻措施。
E. 大家帮忙讲解一下空分工艺流程
工艺原理
利用深冷技术把空气进行深度冷冻液化,然后利用空气中氧气、氮气组分沸点的不同,通过精馏的办法在分馏塔内分离成纯氧气污氮气。
工艺流程简述
空分装置一般是采用常温分子筛净化、增压透平膨胀机提供装置所需冷量、双塔(下塔、上塔)精馏流程。整套设备包括空气过滤系统、空气压缩系统、空气预冷系统、纯化系统、分馏塔系统、仪表系统、电气系统等,整套装置的控制由DCS系统控制完成(联锁、紧急停车)。
空气预冷:原料空气进入自洁式空气过滤器后,除去灰尘和其他颗粒杂质,然后进入离心压缩机加压,经过四级压缩三级间级冷却器冷却后的空气进入空冷塔被冷却水和冷冻水冷却,冷却水由循环水管网来,由冷却水泵打到空冷塔中部。冷冻水由凉水塔来的冷却水经水冷塔与由分馏塔来的多余的污氮气热质交换后由冷冻水泵加压送入空冷塔顶部。
空气经空冷塔和水直接接触,把出空压机的高温气体(<100℃)冷却到~14.5℃,使部分游离水析出,以改善吸附工作状况,大气中的二氧化硫、氧化氮、氯化氮、氨等杂质被水洗涤,硫化氢、一氧化氮不能被水洗涤清除,但能被分子筛吸附。
空气纯化:分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只分子筛切换工作。空气在进入MS1201/MS1202分子筛吸附器前在空冷塔中冷却,以尽可能降低空气温度减少空气中水含量从而降低吸附器的工作负荷,空气中的大部分水份被活性氧化铝清除,二氧化碳和一些碳氢化物被分子筛吸附清除,甲烷、乙烷、乙烯不能被吸附,将会进入塔内。两台分子筛吸附器一台进行工作,另一台进行再生。由分馏塔来的污氮气经电加热器加热至180℃左右,入吸附器加热再生,脱附掉其中的水分、二氧化碳及其他的一些碳氢化合物,后经放空消音器排入大气。
空气精馏:净化后的空气分成三股进入分馏系统:一股加工空气引入循环增压机进行增压,通过冷却器冷却后进入主换热器与反流的气体和液体进行换热,经过换热在主换热器下部这股空气被冷却为液体后送入气、液分离灌进行分离,分离后的气、液送入下塔参与初步精馏。
一股加工空气引入增压透平膨胀机的增压端进行增压,并经水冷却器后进入主换热器,再从主换热器中部(或底部)抽出,经膨胀机膨胀后进入上塔参加精馏;
另一股加工空气进入主换热器,被反流气体和液体冷却后进入下塔参与精馏。(温度在﹣172℃左右)
下塔为筛孔式塔板,液体自上而下逐一流经每块筛板,由于溢流堰的作用,使筛板上造成一定的液层高度,当气体由下而上穿过筛板小孔时与液体接触,产生了鼓泡,这样就增加了气液接触面积使热质交换高效进行,低沸点组份逐渐蒸发,高沸点组份逐渐液化,这样在下塔顶获得低沸点的纯氮,在下塔中部获得液污氮,在下塔底获得高沸点的富氧液空,所需的回流液氮来自下塔顶部主冷。而主冷置于上、下塔之间,下塔上升的氮气在其间被冷凝,而上塔回流的液氧在其间被蒸发,这个过程得以进行,是因为氮气压力高,液氧压力低,例如:氮气压力在0.45MPa时液化温度为﹣177.5℃,而液氧压力在0.05MPa时蒸发温度为﹣180℃,由于两者间温差的存在,氮气的冷凝和液氧的蒸发就得以进行。在上塔,液氧蒸发是上塔所需的上升蒸气,气体穿过分布器沿填料盘上升,液氮、液污氮、液空由下塔引出经过过冷器过冷后经节流阀节流自上往下通过分布器均匀的分布在填料上,在填料表面上气、液充分接触进行充分的热质交换,上升气体低沸点组份(氮)含量不断提高,高沸点组份(氧)被大量的洗涤下来,形成回流液。根据在同等压力下氧、氮沸点不同,经多次蒸发和冷凝,最终在上塔顶部得到低沸点的污氮气,上塔底部获得高沸点的液氧。
下塔产品:纯氮气、纯液氮,液污氮、38%~42%的富氧液空。
富氧液空:经过冷器过冷,节流阀节流后进入上塔,作为上塔回流液。
液污氮:经过冷器过冷,节流阀节流后进入上塔,作为上塔回流液。
纯氮气:在下塔顶部获得纯度为99.99%的纯氮气,一少部分取出经过主换热器换热后送给用户。其余部分进入主冷凝蒸发器中被液氧冷凝成液氮,而液氧吸收热量蒸发成气氧。
纯液氮:一部分液氮回下塔作为下塔回流液体,;另一部分液氮经过冷器过冷后、经节流阀节流后进入上塔顶部参加精馏。
上塔产品:上塔底部产出液氧,顶部产出污氮气。
各种物流进入上塔,经过上塔的进一步分离,在上塔顶部获得纯度为~96%的污氮气,底部获得纯度为99.53%的液氧。污氮气经过冷器、主换热器复热后出冷箱,复热后的污氮气分成两部分,一部分做为分子筛吸附器的再生用气,另一部分也送入水冷塔给水冷却。液氧由上塔底部抽出经过液氧泵加压后进入主换热器与正流气体换热,经过换热液氧被气化后出主换热器复热至常温送给用户。
以上只是空分的一种形式..还有其它工艺....但都大同小异....
F. 空分工艺流程具体是怎样的
空分,简单地说,就是用来把空气中的各组份气体分离,生产氧气、氮气和氩气的一套工业设备。还有稀有气体氦、氖、氩、氪、氙、氡等。
空分有好几种流程,大方向上分为外压缩和内压缩流程。
一般空分装置采用分子筛净化空气,带增压膨胀机,上塔采用规整填料塔,全精馏无氢制氩,氧气外压缩流程。
原料空气在过滤器AF中除去了灰尘和机械杂质后,进入空气透平压缩机压缩,然后送入空气冷却塔AC进行清洗和预冷。空气从空气冷却塔的下部进入,从顶部出来。空气冷却塔的给水分为两段,冷却塔的下段使用经用户水处理系统冷却过的循环水,而冷却塔的上段经水冷却塔WC冷却后的低温水,使空气冷却塔出口空气温度降低。空气冷却塔顶部设有丝网除雾器,以除去空气中的机械水滴。
出空冷塔的空气进入交替使用的分子筛吸附器MS。在那里原料空气中的水分、CO2、C2H2等不纯物质被分子筛吸附。
净化后的加工空气分三股。一小部分被抽出作为仪表空气;一股相当于膨胀量的空气引入增压风机中增压,然后被冷却水冷却至常温后进入主换热器E1。再从主换热器中部抽出进入膨胀机ET,膨胀后经膨胀空气换热器送入上塔C2参与精馏。另一大股空气直接进入主换热器E1后,被返流气体冷却至饱和温度进入下塔C1。空气经下塔初步精馏后,在下塔底部获得液空,在下塔顶部获得纯液氮。下塔抽取的液空、纯液氮,进入过冷器E2过冷后送入上塔相应部位。经上塔进一步精馏后,在上塔底部获得氧气,经膨胀空气换热器进入主换热器复热后出冷箱,经氧气透平压缩机加压至3.0MPa(G)后进入氧气管网。另抽取一部分液氧直接进入液氧贮槽或经喷射蒸发器汽化后送入氧气管网。
从下塔顶部抽取900Nm3/h的压力氮气经主换热器复热后作为氧透的密封气及其它用途。
从上塔中部抽取一定量的氩馏分送入粗氩塔,粗氩塔在结构上分为两段,第二段氩塔底部抽取的液体经液体泵送入第一段顶部作为回流液,经粗氩塔精馏得到98.5%Ar,2ppm O2的粗氩气,送入纯氩塔中部,经纯氩塔精馏在纯氩塔底部得到 (99.999%Ar)的纯液氩,通过阀门送出冷箱,也可以经液氩泵压缩至3.0MPa(G)后,进冷箱经中压氩换热器换热后送出冷箱。
从辅塔顶部得到氮气,经过冷器、主换热器复热后出冷箱作为产品输出。从上塔顶部引出污氮气,经过冷器、主换热器复热后出冷箱,一部分进入分子筛电加热器作为分子筛再生气体,其余气体送水冷塔。
空分装置在变工况情况下可以提取一部分的液氧及液氮,以液体贮存系统作备用供气。液氧、液氮后备系统可以根据用户实际使用情况,配置大型贮槽,紧急情况下可以启动该后备系统维持一定的供气时间。供气采用液体泵增压,水浴式气化器气化的方式。气化后带压氧气或氮气直接供用户管网。
G. 工艺流程图压缩空气代号是什么
工艺流程图压缩空气代号一般是CA。
CA一般是compressed air(压缩空气)的缩写。
工艺流程图是用带箭头的图线及文字(用代号)表示从工艺原料到目标产品的工艺过程。
H. 压缩空气干燥器需要哪些原材料,还有冷冻式和吸附式的工艺流程,谢谢指教!
经过空气压缩机压缩、后部冷却器冷却、气水分离器分离、缓冲罐稳压后的压缩空气一般都处于饱和状态,其相对湿度为100%,而且含有油、固体颗粒等杂质,这种压缩空气是不能直接使用的,需要进行干燥净化处理。
工业上曾有三种方法用于压缩空气的干燥处理,它们是:
1) 利用吸附剂对压缩空气中的水蒸气具有选择性吸附的特性进行脱水干燥。如吸附式压缩空气干燥机。
2) 利用某些化学物质的潮解特性进行脱水干燥。如潮解式压缩空气干燥机。
3) 利用压缩空气中水蒸气分压由压缩空气温度的高低决定的特性进行降温脱水干燥。如冷冻式压缩空气干燥机。
在上述三种压缩空气干燥设备中,潮解式压缩空气干燥机已基本淘汰;而冷干机和吸附式压缩空气干燥机(以下简称“吸干机”)正在被广泛应用。
冷干机与吸附式干燥机相比具有下列特点:
1)没有压缩空气消耗——大部分用户对压缩空气露点要求并不是很高,如使用冷干机可比使用吸干机来得节省能源;
2)无阀件磨损——吸干机有切换阀的问题,虽然冷干机中也有阀件,但是基本无磨损问题;
3)不需要定期添加、更换吸附剂;
4)运转噪音低;吸干机有吸附塔卸压的噪声,在空压房里,一般听不到冷干机的运行噪声;
5)日常维护较简单,只要按时清洗自动排水器滤网即可;
6)对气源的前置预处理要求不高,一般的油水分离器即可满足冷干机对进气质量的要求;
与吸附干燥机相比,经冷干机处理后的压缩空气“压力露点”只能达到0℃以上,因此气体的干燥深度远不及吸干机。在一些的应用领域中,用冷干机是达不到工艺对气源干燥度要求的,如气动仪表、电子工厂等。
I. 压缩机的工作原理是什么
压缩机的工作原理就是通过曲轴连杆机构化电动机的转动为活塞的平动,活塞的平动造成气缸压缩腔体积周期性的变化,以使压缩机气体体积减少同时压力上升。
而工艺压缩机的原理就要看你具体是什么样的工艺气体工艺流程了。工艺压缩机基本要求是长时间的连续运行。
事实上,工艺压缩机主要处理石化行业的有毒、易燃、易爆的工艺气体,和空气压缩机相比,设计与制造有很多特殊之处。
(1)机组不间断连续运转时间不低于3年,设计寿命不低于20年。
(2)
在规定的操作条件下,保证入口容积无负偏差(空气压缩机允许5%的负偏差);由于工况波动大,设计的容积流量具有较大余量。
(3)
轴伸端采用机械密封(接触式油膜密封或非接触式干气密封)、碳环密封(充氮保护)或它们的组合形式,密封的费用昂贵。
(4)
机组流量调节采用循环回流或变频。进气节流较少使用,以防止入口形成负压空气漏入或压比过大后气体超温。
(5)
主电机要求防爆,且功率至少为任何操作条件下最大功率110%,同时不小于安全阀起跳时机组轴功率。
(6)
所有安装在危险区域内的仪表优均选用隔爆型,远传仪表或控制系统多为进口,价格昂贵。
(7)
低负荷、低速下多使用国外知名品牌的滚动轴承,高负荷、高速下则使用滑动轴承,要求带轴承振动、温度监测系统。
(8)
润滑油系统需要参照执行API614,油泵、过滤器、冷却器多为冗余配置,分离器和油箱需要留出较大的滞留容积。
(9)
在腐蚀性气体场合,压力容积材质须考虑选择不锈钢或特殊材质。
J. 压缩机的工作原理
用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用,在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差。
例如压缩机开始启动,向储气罐 打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用。
(10)压缩空气工艺流程扩展阅读
制冷和空调行业中采用的压缩机有5大类型:往复式、螺杆式、回转式、涡旋式和离心式,其中往复式是小型和中型商用制冷系统中应用最多的一种压缩机。
螺杆式压缩机主要用于大型商用和工业系统。回转式压缩机、涡旋式压缩机主要用于家用和小容量商用空调装置,离心式压缩机则广泛用于大型楼宇的空调系统。
参考资料来源:网络-压缩机