① 请问压缩感知理论中,“感知”究竟是对原信号还是对原信号的稀疏表达进行的(请看问题补充详细描述)
测量矩阵phy测量的对象是原始信号x,测出来是测量值y,例如,有160个点(x),经测量后测量值y的点数明显小于x的,这也是压缩感知的目的 1、Phy是测量矩阵,而x可以用一组基(Psy)表达 2、对信号进行观测 3、据我所知的几种算法恢复矩阵是根据测量矩阵和残差弄出来的
② 什么是“压缩感知”
压缩感知, 也成为压缩采样。英文为Compressed Sampling 或者是 Compressive Sening。于2006年被提出,并被美国科技评论评为2007年度十大科技进展。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
③ 跟数字信号处理相关的毕业设计题目有哪些
之前做过的“压缩感知技术研究”与数字信号处理有关,可以参考。
DSP是Digital Signal Processing,数字信号处理的英文,我用过DSP这本,是外国出版的数字信号处理(书是全英文的)。
④ 压缩感知相关
概念是完全等价的,最正宗的说法是"compressed sensing"。因为,大牛们几篇奠基性的文章都是用这个说法。
⑤ 什么是“压缩感知”
压缩感知,又称压缩采样,压缩传感。英文为Compressed Sampling、 Compressive Sening或者是Compressed sensing。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
⑥ MDBP 什么意思
RT--- 你的问题好离奇。。。能不能先详细的说下是什么类型,或者在什么情况??你就这样叫我们怎么回答啊 ,
⑦ 什么是“压缩感知”
压缩感知, 也成为压缩采样。英文为Compressed Sampling 或者是 Compressive Sening。于2006年被提出,并被美国科技评论评为2007年度十大科技进展。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
如果有兴趣可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。