导航:首页 > 文件处理 > 可压缩流体

可压缩流体

发布时间:2022-01-30 14:20:46

❶ 可压缩流体有哪些举例说明一下 谢谢~!

空气、氮气、氧气、二氧化碳等。一般气体的可压缩性远大于液体,多视为可压缩流体,而气液两相流为气体和液体一起流动的混合体,为可压缩流体。

温度与压力的改变,对气体体积影响很大。由热力学可知,当温度不变时,气体的体积与压力成反比,即压力增加一倍,体积缩小为原来的一半。由于压力变化对气体体积影响明显,故一般称气体为可压缩流体。

(1)可压缩流体扩展阅读

把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。例如,研究管道中水击和水下爆炸时,水的压强变化较大,而且变化过程非常迅速,这时水的密度变化就不可忽略,即要考虑水的压缩性,把水当作可压缩流体来处理。

又如,在锅炉尾部烟道和通风管道中,气体在整个流动过程中,压强和温度的变化都很小,其密度变化很小,可作为不可压缩流体处理。再如,当气体对物体流动的相对速度比声速要小得多时,气体的密度变化也很小,可以近似地看成是常数,也可当作不可压缩流体处理。

❷ fluent里面如何设置可压缩流体的边界条件以及初始条件

fluent的边界条件如下:
速度入口边界条件(veloc
it
y-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。
压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。 压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。压力进口条件还可以用于处理外部或者非受限流动的自由边界。
压力出口边界条件(pressure-outlet):需要给定出口静压(表压)。而且,该压力只用于亚音速计算(M<1)。如果局部变成超音速,则根据前面来流条件外推出口边界条件。需要特别指出的是,这里的压力是相对于前面给定的工作压力。
质量入口边界条件(mass-flow-inlet):给定入口边界上的质量流量。主要用于可压缩流动问题,对于不可压缩问题,由于密度是常数,可以使用速度入口条件。如果压力边界条件和质量边界条件都适合流动时,优先选择用压力进口条件。

❸ 可压缩流体的可压缩流体

液体压缩系数很小,在相当大的压强变化范围内密度几乎不变,因此一般的液体平衡及运动问题都将液体视作不可压缩流体进行理论分析;气体的可压缩性远大于液体,多视作可压缩流体,但几乎所有自然大气运动,气流速度不大,远小于声速,流动过程中 密度没有明显变化,仍可作为不可压缩流体处理。

❹ 可压缩流体和不可压缩流体的区别

等密度流体就是不可压缩流体,不过不可压缩流体在概念上更宽一些,因为可压缩流体在无旋的时候,和不可压缩流体计算结果差别就在于,
微分方程导数差(1-(V/C)^2)^(1/2)倍,C是音速。
所以V/C在0.3以下这个差别就看不出来,
于是把V/C在0.3以下的流动也近似看成不可压流体。
所以是不是不可压流体,关键看速度相对音速大小,空气音速340米/秒,把100米/秒以下速度的流体叫不可压。
而声速在海水中它的传播速度却达到1480米/秒,大约是空气中传播速度的4.5倍,这时即就是速度开到500米/秒,还可以认为是不可压缩流动

❺ 简述不可压缩理想流体的含义及其意义

在流体力学中,为研究问题的方便,引入“不可压缩流体”的概念。所谓不可压缩流体,即绝对不可压缩的流体。实际流体都是可压缩的,但不同的流体,其压缩性有很大的差别,如气体与液体,其主要区别就在于其可压缩性的大小。对于液体来说,其压缩性很小,是影响流动的一个次要因素,常常可以忽略不计。对于气体而言,它是可以压缩的,且压缩性较大。因而在一般工程问题中,常将气体作可压缩流体处理,而将液体作不可压缩流体处理。但气体的流动性很大,只要施加很小的压力差,气体就可迅速地流动起来,而由这个压力差所引起的各处密度的变化是很小的,因此,对于流动着的气体,其压缩性也可忽略不计。

将完全没有豁性的流体称为理想流体。理想流体是流体力学中的一个假想模型,在实际中并不存在。但在很多实际工程问题中,实际流体所表现出的a滞性很小,往往可以忽略不计,而可简化成理想流体。

❻ 可压缩流体的介绍

具有可压缩性的流体即为可压缩流体。实际流体都是可压缩的,然而有许多流动,流体密度变化很小可以忽略,由此引出不可压缩流体的概念。不可压缩流体是一理想化的力学模型。相对不可压缩流体,考虑流体体积变化时,则将流体视为可压缩流体。

❼ Fluent中是如何体现可压缩流体的

密度不要选const就是可压缩流了么?tutorial guide上是不是有个compressible flow的例子,看下就好了

❽ 可压缩流体的流体的可压缩性

流体的可压缩性是指流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。可压缩性实际上是流体的弹性。 液体的可压缩性用压缩系数来表示,他表示在一定温度下,压强增加一个单位体积的相对缩小率。若液体的原体积为V,则压强增加dp后,体积减少dV,压缩系数为
κ=-V^-1*dV/dp
由于液体受压体积减少,dp和dV异号,式中右侧加负号,以使κ为正值,其值越大则流体越容易压缩。κ的单位是1/Pa。
根据增压前后质量不变,压缩系数可表示为
κ=dρ/(ρdp)
液体的压缩系数随温度和压强变化。
压缩系数的倒数是体积弹性模量,即
Κ=1/κ=-Vdp/dV=ρdp/dρ
Κ的单位是Pa。 气体具有显着的可压缩性,在一般情况下,常用气体(如空气、氮气、氧气、二氧化碳等)的密度、压强温度三者的关系符合完全气体状态方程,即
p/ρ=RT/M
式中p为气体的绝对压强(N/m^2);ρ为气体的密度(kg/m^3);T为气体的热力学温度(K);R为气体常数,在标准状态下,R=8314/M(J/kg*K),M为气体的分子量。空气的气体常数R=287J/kg*K。当气体在压强很高,温度很低的状态下,或接近于液体时就不能当做完全气体看待,上式不适用。

❾ 什么的流体称为不可压缩流体

压缩性是流体的基本属性。任何流体都是可以压缩的,只不过可压缩的程度不同而已。液体的压缩性都很小,随着压强和温度的变化,液体的密度仅有微小的变化,在大多数情况下,可以忽略压缩性的影响,认为液体的密度是一个常数。
DΡ/DT=0的流体称为不可压缩流体,而密度为常数的流体称为不可压均质流体。
气体的压缩性都很大。从热力学中可知,当温度不变时,完全气体的体积与压强成反比,压强增加一倍,体积减小为原来的一半;当压强不变时,温度升高1℃体积就比0℃时的体积膨胀1/273。所以,通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。我们把密度随温度和压强变化的流体称为可压缩流体。
把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。例如,研究管道中水击和水下爆炸时,水的压强变化较大,而且变化过程非常迅速,这时水的密度变化就不可忽略,即要考虑水的压缩性,把水当作可压缩流体来处理。又如,在锅炉尾部烟道和通风管道中,气体在整个流动过程中,压强和温度的变化都很小,其密度变化很小,可作为不可压缩流体处理。再如,当气体对物体流动的相对速度比声速要小得多时,气体的密度变化也很小,可以近似地看成是常数,也可当作不可压缩流体处理。

❿ 何谓可压缩流体,不可压缩流体,理想流体

恩,首先流体都是可压缩的。但是对于低速流体来说,改变其密度往往需要很大的压力,所以对于Ma<0.3的低速流动来说,可以忽略流动中密度的改变量,即认为流动是不可压缩的,此时流动方程组得到解耦。当Ma>=0.3时,由于速度的增加,动能占气体总能量的比重越来越大。总压=静压+动压的低速近似不在成立,气体的流动状态应严格按照等熵关系式求的。此时密度随马赫数的变化明显改变,所以称其为可压缩的。至于理想流体,应指符合理想气体状态方程的气体。理想气体状态方程是由研究低压下气体的行为导出的,因此理想气体在微观上具有分子之间无互相作用力和分子本身不占有体积的特征。呵呵,我们总说某理想无粘气体,渐渐地许多人就把理想和无粘等同了……注意结合语境吧。

阅读全文

与可压缩流体相关的资料

热点内容
优学派怎么升级安卓系统80 浏览:660
怎样全选文件夹并打印 浏览:816
哪些部门适用零基预算法 浏览:918
如何查找粤苗app 浏览:634
编译要学多久 浏览:493
android拼写检查 浏览:466
医学史pdf 浏览:915
苹果手机服务器ip地址怎么查 浏览:115
该如何利用移动app创业呢 浏览:871
python脚本之间传参 浏览:378
android程序列表 浏览:951
只装linux 浏览:717
建行如何app赎楼 浏览:177
搭建一个抢单app要怎么实现 浏览:741
c语言在线编译器可粘贴 浏览:239
天津发票服务器地址云空间 浏览:392
船用螺杆式制冷压缩机组 浏览:693
python调用webapi 浏览:196
加密货币投资收益低于250万 浏览:439
高频电子线路张肃文pdf 浏览:547