导航:首页 > 文件处理 > 小波变换数据压缩

小波变换数据压缩

发布时间:2022-09-01 16:07:37

⑴ 基于小波变换的图像压缩问题

matlab没怎么学。
按错误提示:应该是wdencmp函数的参数不对。
你搜下这个函数怎么用,
小波变换这些,网上源程序也很多的

⑵ 小波变换

小波变换和去噪
通俗的讲就是剥大蒜的过程,也就是不断的分层,使得信号拆分成各种频段(根据采用频率而定),而这一过程要用到低通滤波器和高通滤波器,而小波去噪就是在高频部分(因为通常白噪声出现在高频部分)改变数字量,运用一些算法去除一些混有噪声的数字,然后再运用重构低通滤波器和高通滤波器把刚刚分层的频段加起来,差不多就是拼凑大蒜的过程吧。

如何改变高频系数(也就是去除噪声)具体算法如下:
1.软门限和硬门限
所谓门限法,就是选择一个门限,然后利用这个门限对小波变换后的离散细节信号和
离散逼近信号进行处理。
硬门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,而数据为其他值时不变。
软门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,然后把其他数据点向零收缩。
2.门限选择的准则及其算法
根据现有的文献,对于被高斯白噪声污染的信号基本噪声模型, 一般地, 选择门限的准则如下:
1. 无偏风险估计准则。对应于每一个门限值, 求出与其对应的风险值, 使风险最小
的门限就是我们所要选取的门限,其具体算法为:
(a) 把待估计的矢量中的元素取绝对值, 由小到大排序, 然后将各个元素平方, 得到
新的待估计矢量N V ,其长度为原待估计矢量的长度n。
(b) 对应每一个元素下标(即元素的序号) k ,若取门限为待估计矢量的第k 个元素的
平方根,则风险算法为:
(2) 固定门限准则。 利用固定形式的门限,可取得较好的去噪特性。
设n 为待估计矢量的长度,取长度2 倍的常用对数的平方根为门限.
(3) 极小极大准则。本准则采用固定门限获得理想过程的极小极大特性. 极小极大原
理是在统计学中为设计估计量而采用的,由于去噪信号可以假设为未知回归函数的估计
量,则极小极大估计量是实现在最坏条件下最大均方误差最小的任选量。
(4) 混合准则。 它是无偏风险估计和固定门限准则的混合

⑶ 用小波分析法除去音频信号的噪声

小波变换及其应用是八十年代后期发展起来的应用数学分支,被称为“Fourier分析方法的突破性进展[1]”。 1986年Meyer Y构造了一个真正的小波基,十多年间小波分析及其应用得到了迅速发展,原则上传统的傅里叶分析可用小波分析方法取代[2],它能对几乎所有的常见函数空间给出通过小波展开系数的简单刻划,也能用小波展开系数描述函数的局部光滑性质,特别是在信号分析中,由于它的局部分析性能优越,因而在数据压缩与边缘检测等方面它比现有的手段更为有效[3-8]。 小波变换在图像压缩中的应用因它的高压缩比和好的恢复图像质量而引起了广泛的注意,且出现了各种基于小波变换的图像压缩方案。
小波变换自1992年Bos M等[9]首先应用于流动注射信号的处理,至今虽才8年时间,但由于小波变换其优良的分析特性而迅速渗透至分析化学信号处理的各个领域。本文介绍了小波变换的基本原理及其在分析化学中的应用情况。
1 基本原理
设f(t)为色谱信号,其小波变换在L2(R)中可表示为:

其中a, b∈R,a≠0,参数a称为尺度因子b为时移因子,而(Wf)(b, a)称为小波变换系数,y(t)为基本小波。在实际分析化学信号检测中其时间是有限长度,f(t)通常以离散数据来表达,所以要采用Mallat离散算法进行数值计算,可用下式表示:
fj+1=θj + f j
其中:N为分解起始尺度;M为分解次数;fj和qj可由下式求得:

此处:Φj, m为尺度函数;Ψj, m 为小波函数;系数Cmj ,dmj可由下式表达:

hk-2m , gk-2m取决于小波母函数的选取。
用图表示小波分解过程如下:

图中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分别称为在尺度N上的低频分量和高频分量。上述分解过程的逆过程即是信号的重构过程。
2 分析化学中的应用
根据小波变换基本原理及其优良的多分辩分析特性,本文将小波变换在分析化学信号处理中的应用划归为以下三个方面:
2.1 信号的滤波
小波滤波方法目前在分析化学中应用主要是小波平滑和小波去噪两种方法。小波平滑是将某一信号先经小波分解,将在时间域上的单一信号分解为一系列不同尺度上的小波系数(也称不同频率上的信号), 然后选定某一截断尺度,使高于此尺度的小波系数全部为零,再重构信号,这样就完成了一个低通小波滤波器的设计;而小波去噪,则是在小波分解基础上选定一阈值,对所有尺度空间的小波系数进行比较,使小于此阈值的小波系数为零,然后重构信号[10]。
邵利民[11]等首次将小波变换应用于高效液相色谱信号的滤波,他们应用了Haar小波母函数,由三次小波分解后所得的低频部分重构色谱信号,结果成功地去除了噪声,明显地提高了色谱信号的信噪比,而色谱峰位保持一致,此法提高了色谱的最低检测量和色谱峰的计算精度。董雁适[12]等提出了基于色谱信号的小波自适应滤波算法,使滤波与噪声的频带分布,强度及信噪在频带上的交迭程度基本无关,具有较强的鲁棒性。
在光谱信号滤噪中的应用,主要为红外光谱和紫外光谱信号滤噪方面的应用,如Bjorn K A[13]等将小波变换用于红外光谱信号的去噪,运用6种不同的小波滤噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)对加噪后红外光谱图进行了去噪,针对加噪与不加噪的谱图,对Fourier变换、移动平均滤波与小波滤波方法作了性能比较研究,结果认为Fourier变换、移动平均滤波等标准滤波方法在信噪比很低时滤噪性能与小波滤波方法差不多,但对于高信噪比的信号用小波滤噪方法(特别是HYBRID和VISU)则更有效 。闵顺耕[14]等对近红外漫反射光谱进行了小波变换滤波。顾文良[15]等对示波计时电信号进行了滤噪处理。王立世[16]等对电泳信号也做了小波平滑和去噪,都取得了满意的效果。邹小勇[17]等利用小波的时频特性去除了阶跃伏安信号中的噪音,并提出了样条小波多重滤波分析方法,即将过滤后的高频噪音信号当成原始信号进行滤波处理,使之对有用信号进行补偿。鲍伦军等[18]将样条小波和傅里叶变换联用技术应用于高噪音信号的处理。另外,程翼宇[19]等将紫外光谱信号的滤噪和主成分回归法进行了有机的结合,提出了小波基主成分回归(PCRW)方法,改善了主成分回归算法。
2.1 信号小波压缩
信号经小波分解之后,噪音信号会在高频部分出现,而对于有用的信号分量大部分在低频部分出现,据此可以将高频部分小波系数中低于某一阈值的系数去除,而对其余系数重新编码,只保留编码后的小波系数,这样可大大减少数据贮存量,达到信号压缩的目的。
在近代分析化学中分析仪器的自动化水平在不断提高,分析仪器所提供的数据量越来越大。寻找一种不丢失有效信息的数据压缩方法,节省数据的贮存量,或降低与分析化学信息处理有关的一些算法的处理量,已成为人们关心的问题。Chau F T等[20]用快速小波变换对模拟和实验所得的紫外可见光谱数据进行了压缩,讨论了不同阶数的Daubechies小波基、不同的分解次数及不同的阈值对压缩结果的影响。Barclay V J和Bonner R F[10]对实验光谱数据作了压缩,压缩率可达1/2~1/10,并指出在数据平滑和滤噪的同时,也能进行数据的压缩是小波有别与其他滤波方法的一大特点。王洪等[21]用Daubechies二阶正交小波基对聚乙烯红外光谱进行了成功的压缩,数据可压缩至原来的1/5以下。邵学广等[22]对一维核磁共振谱数据作了小波变换压缩,分别对常用的Haar、Daubechies以及Symmlet小波基作了比较,其结果表明准对称的Symmlet小波基对数据的复原效果最佳,而且在压缩到64倍时,均方差仍然较小。章文军等[23]提出了常用小波变换数据压缩的三种方法,将紧支集小波和正交三次B-样条小波压缩4-苯乙基邻苯二甲酸酐的红外光谱数据进行了对比,计算表明正交三次B-样条小波变换方法效果较好,而在全部保留模糊信号及只保留锐化信号中数值较大的系数时,压缩比大而重建光谱数据与原始光谱数据间的均方差较小。邵学广等[24]将小波数据压缩与窗口因子分析相结合,在很大程度上克服了用窗口因子分析直接处理原始信号时人工寻找最佳窗口的困难,在压缩比高达8:1的情况下,原始信号中的有用信息几乎没有丢失,窗口因子分析的解析时间大为缩短。Bos M等[25]用Daubechies小波对红外光谱数据进行压缩,压缩后的数据作为人工神经网络算法的输入接点,从而提高了人工神经网络的训练速度,预测的效果也比直接用光谱数据训练的要好。
2.3 小波多尺度分析
在多尺度分析方面的应用主要是对化学电信号进行小波分解,使原来单一的时域信号分解为系列不同频率尺度下的信号,然后对这些信号进行分析研究。
小波在色谱信号处理方面的应用,主要是对重叠色谱峰的解析。邵学广[26-27]等对苯、甲苯、乙苯三元体系色谱重叠峰信号小波变换后的某些频率段进行放大,然后重构色谱信号,使重叠色谱峰得到了分离,定量分析结果得到了良好的线性关系。此后邵学广[28]等利用了谱峰提取法对植物激素重叠色谱峰作了定量计算,此法表明,利用小波变换从重叠色谱信号中提取的各组分的峰高与浓度之间仍然具有良好的线性关系。
重叠伏安峰的分辨是电分析化学中一个长期存在的难题。当溶液中存在两种或更多的电活性物质,而这些物质的氧化(或还原)电位又很靠近时,就会不可避免地出现重叠峰的现象,而给进一步的定性、定量分析带来了很大困难。因此,人们做了较多的工作去解决这一难题。数学方法是目前处理重叠峰的重要手段,如Fourier变换去卷积以及曲线拟合。曲线拟合通常用来获得“定量”的信息,但这种方法有较多的人为因素,重叠峰包含的峰的个数,相对强度都是靠假设得来,因而可能引入严重的误差;去卷积方法则是一种频域分析手段,但该方法需先找出一个函数来描述伏安峰,然后再根据这个函数来确定去卷积函数,因此,去卷积函数的确定是比较麻烦的,尤其是对不可逆电极过程,无法找到一个合适的函数表达式,而且该方法还需经正、反Fourier变换,比较繁琐费时, 而小波分析的出现成了电分析化学家关注的热点。
陈洁等[29]用DOG小波函数处理差分脉冲实验数据,通过选择合适的伸缩因子,成功地延长了用DPV法测定Cu2+的线性范围。郑建斌等[30-31]将小波变换用于示波计时电位信号的处理,在有用信息提取、重叠峰分辨等方面进行了系统的研究。王洪等[32]将小波边缘检测的思想用于电位滴定终点的确定,找到了一种判断终点准确的终点判断方法。郑小萍等[33]将样条小波变换技术用于分辨重叠的伏安峰,以选定的分辨因子作用于样条小波滤波器,构造了一个小波峰分辨器,用它来直接处理重叠的伏安峰,取得了较好的分离效果,被处理重叠峰可达到完全基线分离,且峰位置和峰面积的相对误差均较小。
对于红外光谱图,目前也是通过对红外谱图进行小波分解,以提高红外谱图的分辩率。陈洁[34]等对辐射合成的丙烯酰胺、丙烯酸钠共聚物水凝胶的红外光谱信号经小波处理后,使其特征吸收带较好地得到分离,成功地提高了红外光谱图的分辨率。谢启桃[35]等对不同晶型聚丙烯红外光谱图作了小波变换,也得到了可用以区分聚丙烯a、b两晶型的红外光谱图。
3 展望
小波变换由于其优良的局部分析能力,使其在分析化学信号的滤噪、数据压缩和谱峰的分离方面得到了很好的应用。本人通过对小波变换在化学中应用的探索,认为对于分析化学中各种电信号的平滑、滤波还有待作更深入的研究,以设计出更为合理有效的小波滤波器,以消除由于平滑而导至的尖锐信号的峰高及峰面积的变化或由于去噪而带来的尖锐信号附近的不应有的小峰的出现;对于重叠峰的分离及其定量计算,还应该探讨如色谱峰基线的确定方法以及待分离频率段的倍乘系数的确定方法;另外对于色谱峰的保留指数定性问题,由于不同化合物在某一确定的分析条件下有可能会出现保留值相同的情况,这将使在未知样中加标准的峰高叠加法定性或外部标准物对照定性变得困难,我们是否可能对色谱峰进行小波分解,然后在不同的尺度上对其进行考察,以寻求色谱峰的小波定性方法,这可能是个可以进一步研究的问题。
小波变换将在分析化学领域得到更加广泛的应用,特别对于分析化学中的多元定量分析法,如多元线性回归法(MLR),主成分回归法(PCR),偏最小二乘法(PLS)等方法及人工神经网络(ANN)将会同小波变换进行有机的结合,以消除各种噪声干扰对定量分析的影响;或对相关数据进行压缩以减少待分析数据的冗余,提高分析精度和大大减少计算量提高分析速度。小波变换将会成为分析化学中定量和定性分析的一种非常重要的工具。

⑷ 谁会用matlab实现小波变换对图片的压缩处理

subplot(1,2,1);
imshow(I);
title('原始图像');
subplot(1,2,2)
imshow(I2);
title('压缩图像');

⑸ 求教matlab小波变换ebcot算法的图像压缩

clear all Y=imread('5.PNG'); [X,map]=gray2ind(Y,256); subplot(1,2,1); image(X); colormap(map); title('原始图像'); %采用默认的全局阈值 [thr,sorh,keepapp,crit]=ddencmp('cmp','wp',X); %图像进行压缩 Xc=wpdencmp(X,sorh,3,'bior3.1'

⑹ 对信号进行小波变换后得到的系数是什么用小波变换进行信号压缩的原理是什么

小h波变换和去噪通俗的讲就是剥大a蒜的过程,也y就是不e断的分6层,使得信号拆分6成各种频段(根据采用频率而定),而这一e过程要用到低通滤波器和高通滤波器,而小m波去噪就是在高频部分5(因为2通常白噪声出现在高频部分8)改变数字量,运用一w些算法去除一w些混有噪声的数字,然后再运用重构低通滤波器和高通滤波器把刚刚分5层的频段加起来,差不u多就是拼凑大a蒜的过程吧。 如何改变高频系数(也r就是去除噪声)具体算法如下m: 2。软门u限和硬门t限所谓门d限法,就是选择一p个j门n限,然后利用这个i门z限对小l波变换后的离散细节信号和离散逼近信号进行处理。硬门n限可以3描述为8:当数据的绝对值小t于x给定的门e限时,令其为4零,而数据为5其他值时不t变。软门i限可以1描述为2:当数据的绝对值小x于u给定的门d限时,令其为1零,然后把其他数据点向零收缩。 3。门e限选择的准则及q其算法根据现有的文7献,对于m被高斯白噪声污染的信号基本噪声模型, 一k般地, 选择门i限的准则如下p: 5. 无b偏风5险估计7准则。对应于f每一q个y门p限值, 求出与g其对应的风4险值, 使风2险最小m的门b限就是我们所要选取的门c限,其具体算法为7: (a) 把待估计2的矢量中5的元g素取绝对值, 由小i到大s排序, 然后将各个z元t素平方5, 得到新的待估计0矢量N V ,其长7度为6原待估计4矢量的长0度n。 (b) 对应每一v个t元l素下p标(即元o素的序号) k ,若取门l限为0待估计3矢量的第k 个c元h素的平方6根,则风5险算法为1: (1) 固定门s限准则。 利用固定形式的门u限,可取得较好的去噪特性。设n 为1待估计5矢量的长6度,取长0度3 倍的常用对数的平方8根为0门n限。 (7) 极小p极大w准则。本准则采用固定门f限获得理想过程的极小z极大e特性。 极小j极大o原理是在统计7学中8为4设计2估计8量而采用的,由于s去噪信号可以6假设为7未知回归函数的估计4量,则极小y极大m估计7量是实现在最坏条件下f最大c均方4误差最小q的任选量。 (3) 混合准则。 它是无j偏风7险估计8和固定门h限准则的混合 2011-10-27 7:09:53

⑺ 通过小波变换怎么样能够改进图像压缩的质量和大小

1.如果你要找论文,请到到中国知网数据库http://dlib.cnki.net/kns50/
或者维普数据库http://202.120.203.253:8088/index.asp,数据库里多的是。

2. 图像的小波变换的提出的其中一个原因是,JPEG在低码率下存在方块效应等缺点,为了克服这些缺点而提出了图像经过小波变换后压缩。而且相对于DCT变换,DWT变换后压缩的效果更佳,因为在小波域不仅有频域还有空域信息。

3. 三言两语很难说清的,找本教科书看看就明白了

⑻ 小波函数的应用

通常来讲,DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。小波变换现在被大量不同的应用领域所采纳,经常替代了傅立叶变换的位置。很多物理学的领域经历了这样的转变,包括分子动力学 , 重新计算 (ab initio calculations),天文物理学,密度矩阵局部化,地震地质物理学, 光学 , 湍流 ,和 量子力学。其他经历了这种变化的学科有图像处理 ,血压,心率和心电图 分析, DNA 分析,蛋白质分析,气象学 ,通用 信号处理 ,语言识别 ,计算机图形学 ,和 多分形分析。小波的一个用途是数据压缩。和其他变换一样,小波变换可以用于原始数据(例如图像),然后将变换后的数据编码,得到有效的压缩。JPEG 2000 是采用小波的图像标准。细节请参看 小波压缩。

阅读全文

与小波变换数据压缩相关的资料

热点内容
找酒吧设计公司用什么app 浏览:680
基本初等函数的导数公式及导数的运算法则 浏览:915
为什么小米app启动广告关不了 浏览:877
空调压缩机一直不停 浏览:511
养殖系统开发源码 浏览:82
pdf的目录 浏览:406
光遇安卓如何一个人拍视频 浏览:277
怨女pdf 浏览:708
扭曲服务器什么时候开 浏览:23
加密货币换平台 浏览:609
手机内存压缩软件 浏览:33
生成树是否与遍历算法有关 浏览:728
python强化学习迷宫 浏览:450
老包子解压视频 浏览:885
服务器注册是什么意思 浏览:418
程序员群体焦虑如何破局 浏览:585
程序员在广州上班 浏览:803
androidlinuxadt 浏览:512
广联达软件加密锁原装芯片 浏览:338
如何打开数据库服务器 浏览:312