导航:首页 > 文件处理 > 稀疏矩阵的压缩存储的作用

稀疏矩阵的压缩存储的作用

发布时间:2022-09-10 15:05:05

❶ 特殊矩阵和稀疏矩阵哪一种采用压缩存储会失去随机存取的功能为什么

稀疏矩阵压缩存储后,必会失去随机存取功能.
稀疏矩阵在采用压缩存储后将会失去随机存储的功能.因为在这种矩阵中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,这样的结点组成的线性表中叫三元组表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素.

❷ 对稀疏矩阵进行压缩的目的

我给你源码记得顶我啊!!最主要的是把分给我哦!!
include<time.h>/*用于下面的srand((unsigned)time(NULL));函数的头文件*/
#include<stdio.h>
#include<stdlib.h>
#define MAX_ARRAY_DIM 2
#define MAXSIZE 100
typedef struct
{
int aa[MAX_ARRAY_DIM];
int dim;
int *base;
}array;
typedef struct
{
int i,j;/*记录非零元的行与列坐标*/
int e;/*记录非零原的数值*/
}triple;/*构成非零元素*/
typedef struct
{
triple data[MAXSIZE];/*预期非零原最大个数*/
int *rpos;/*记录各行第一个非零原的位置表*/
int mu,nu,tu;/*记录稀疏矩阵的行列和非零原个数*/
}tsmatrix;
main()
{
void initarray(array *a);/*数组初始化*/
void createsMatrix(array *a);/*创建稀疏矩阵*/
void inittsmatrix(array *a,tsmatrix *m);/*初始化稀疏矩阵三元组*/
void outputtsmatrix(tsmatrix *m);/*输出稀疏矩阵*/
void destroysmatrix(array *a);/*销毁稀疏矩阵*/
void outputarray(array *a);/*输出数组*/
void subtmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q);/*系数矩阵相减*/
void addsmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q);/*系数矩阵相加*/
void multsmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q);/*稀疏矩阵相乘*/
array a;
tsmatrix m,n,q;
int flag1=1,i;
srand((unsigned)time(NULL));
initarray(&a);/*初始化数组*/
createsMatrix(&a);/*创建稀疏矩阵*/
inittsmatrix(&a,&m);/*初始化稀疏矩阵三元组*/
outputtsmatrix(&m);/*输出稀疏矩阵*/
outputarray(&a);/*输出数组*/
destroysmatrix(&a);/*销毁原数组*/
initarray(&a);/*初始化数组*/
createsMatrix(&a);/*创建稀疏矩阵*/
inittsmatrix(&a,&n);/*初始化稀疏矩阵三元组*/
outputtsmatrix(&n);/*输出稀疏矩阵*/
outputarray(&a);/*输出数组*/
destroysmatrix(&a);/*销毁原数组*/
printf("2个三元数组已经创建成功,您要进行什么操作?\n1.(m+n)\n2.(m-n)\n3.(m*n)\n4.(n-m)\n");
while(flag1)
{
fflush(stdin);
scanf("%d",&i);
switch(i)
{
case 1:addsmatrix(&m,&n,&q);flag1=0;break;
case 2:subtmatrix(&m,&n,&q);flag1=0;break;
case 3:multsmatrix(&m,&n,&q);flag1=0;break;
case 4:subtmatrix(&n,&m,&q);flag1=0;break;
default:printf("输入错误请重新输入\n您要进行什么操作?1.(m+n)\n2.(m-n)\n3.(m*n)\n4.(n-m)\n\n");
}
}
printf("运算结果为\n");
outputtsmatrix(&q);/*输出运算结果*/
}
void initarray(array *a)/*创建数组*/
{
int i,j;
printf("请输入要创建的维数,(由于这里的作用是创建稀疏矩阵,建议输入2)\n");
scanf("%d",&a->dim);
if(a->dim!=MAX_ARRAY_DIM)
{
printf("输入维数超过界限\n");
exit(1);
}
for(i=0;i<a->dim;i++)
{
printf("请输入第%d维的数据",i+1);
scanf("%d",&a->aa[i]);
if(a->aa[i]<1)
{
printf("输入超过范围\n");
exit(1);
}
}
j=1;
for(i=0;i<a->dim;i++)
j*=a->aa[i];
if(!(a->base=(int *)malloc(j*sizeof(int))))
{
printf("开辟空间失败\n");
exit(1);
}
printf("数组创建成功\n");
}
void createsMatrix(array *a)/*创建稀疏矩阵*/
{
int i,j,k,l,m,n,flag1;
printf("是手动输入还是电脑自行创建?\n选1.电脑自行创建\n选0.手动创建\n");
scanf("%d",&i);
if(i!=1&&i!=0)
{
printf("输入格式错误\n");
exit(1);
}
if(i==0)/*手动输入*/
{
printf("请输入\n");
for(j=0;j<a->aa[0];j++)
{
for(k=0;k<a->aa[1];k++)
scanf("%d",&a->base[j*a->aa[1]+k]);
printf("\n");
}
}
else/*电脑自动输入*/
{
l=rand()%(a->aa[0]*a->aa[1]/4)+1;/*预期计算要输入多少个非零元*/
for(j=0;j<a->aa[0];j++)/*先将程序中所有的元素赋予0*/
for(k=0;k<a->aa[1];k++)
a->base[j*a->aa[1]+k]=0;
m=0;
while(m<l)/*输入l个非零元*/
{
flag1=1;
while(flag1)/*被赋予的元素原本必须是零*/
{
i=rand()%a->aa[0];/*自动选择行*/
j=rand()%a->aa[1];/*自动选择列*/
if(a->base[i*a->aa[1]+j]==0)/*所选择的元素是0*/
flag1=0;/*推出循环,否则继续循环直到,是零为止*/
}
flag1=1;
a->base[i*a->aa[1]+j]=rand()%10;/*赋值10以内*/
n=rand()%10;
if(n<5)
a->base[i*a->aa[1]+j]*=-1;/*输入正负*/
m++;
}
}
}
void inittsmatrix(array *a,tsmatrix *m)/*稀疏矩阵非零原初始化*/
{
int i,j,k=0,*num;
for(i=0;i<a->aa[0];i++)/*输入非零原坐标及数据*/
for(j=0;j<a->aa[1];j++)
if(a->base[i*a->aa[1]+j]!=0)
{
m->data[k+1].i=i+1;
m->data[k+1].j=j+1;
m->data[k+1].e=a->base[i*a->aa[1]+j];
k++;
}
m->mu=a->aa[0];/*记录行*/
m->nu=a->aa[1];/*记录列*/
m->tu=k;/*记录非零原数量*/
if(!(num=(int *)malloc((m->mu+1)*sizeof(int))))/*num用于记录每行的非零原的个数*/
{
printf("空间开辟失败\n");
exit(1);
}
if(!(m->rpos=(int *)malloc((m->mu+1)*sizeof(int))))/*本人认为数据结构上的rpos定义有错误,如果某一行全都是非零元那m->rpos[i]=0并不是m->rpos[i-1]+num[i-1]所以以下的rpos操作可能与书上的原意不符*/
{
printf("空间开辟失败\n");
exit(1);
}
for(i=0;i<=m->mu;i++)/*初始化num*/
num[i]=0;
for(i=1;i<=m->tu;i++)/*记录每行非零原的个数*/
++num[m->data[i].i];
if(num[1]==0)/*如果第一行没有非零原的话那m->rops[1]=0,这就是我修改的原因,如果按照书上写的话,那应该是1,对以后的操作有麻烦*/
{
m->rpos[1]=0;
j=0;
}
else/*否则记1*/
{
m->rpos[1]=1;
j=num[1];
}
for(i=2;i<=m->mu;i++)/*运算*/
{
if(num[i]==0)
m->rpos[i]=0;/*当前这一行并没有非零元所以记录1*/
else/*否则记录所对应的序列号*/
{
m->rpos[i]=j+1;
j+=num[i];
}
if(j>=m->tu)/*如果j的数量已经等于所有非零原的数量,那就应该退出循环*/
break;
}
while(i<=m->mu)/*如果半路退出循环,那么剩下的每行,都没有非零原*/
i++,m->rpos[i]=0;
}
void outputtsmatrix(tsmatrix *m)/*输出稀疏矩阵*/
{
int i;
printf("三元组表为\n");
for(i=1;i<=m->tu;i++)
printf("%d行 %d列 %d\n",m->data[i].i,m->data[i].j,m->data[i].e);
printf("行为%d列为%d\n",m->mu,m->nu);
for(i=1;i<=m->mu;i++)
printf("%d行的第一个元素所在位置表的位置是%d\n",i,m->rpos[i]);

}
void destroysmatrix(array *a)/*销毁稀疏矩阵*/
{
if(!a->base)exit(1);
free(a->base);a->base=NULL;
printf("\n稀疏矩阵数组销毁成功(*^__^*) \n\n");
}
void outputarray(array *a)/*输出数组*/
{
int i,j;
for(i=0;i<a->aa[0];i++)
{
for(j=0;j<a->aa[1];j++)
printf("%2d ",a->base[i*a->aa[1]+j]);
printf("\n");
}
}
void smatrix(tsmatrix *m,tsmatrix *t)/*复制稀疏矩阵*/
{
int i;
t->mu=m->mu,t->nu=m->nu,t->tu=m->tu;
if(!(t->rpos=(int *)malloc((t->mu+1)*sizeof(int))))
{
printf("开辟控件失败\n");
exit(1);
}
if(t->tu)
{
for(i=1;i<=m->tu;i++)
{
t->data[i].i=m->data[i].i;
t->data[i].j=m->data[i].j;
t->data[i].e=m->data[i].e;
}
}
for(i=1;i<=t->mu;i++)
t->rpos[i]=m->rpos[i];
}
void subtmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q)/*稀疏矩阵相减*/
{
int i,j,k,a,b,c,x,y,z,*num;
q->mu=m->mu>n->mu?m->mu:n->mu;
q->nu=m->nu>n->nu?m->nu:n->nu;
q->tu=0;
if(!(num=(int *)malloc((q->mu+1)*sizeof(int))))
{
printf("创建空间失败\n");
exit(1);
}
if(!(q->rpos=(int *)malloc((q->mu+1)*sizeof(int))))
{
printf("创建空间失败\n");
exit(1);
}
for(i=1;i<=q->mu;i++)
num[i]=0;
if(m->tu==0)
smatrix(n,q);
else if(n->tu==0)
smatrix(m,q);
else
{
i=j=k=1;
while(i<=m->tu&&j<=n->tu)
{
a=m->data[i].i;
b=m->data[i].j;
c=m->data[i].e;/*分别记录m的3元组的数据*/
x=n->data[j].i;
y=n->data[j].j;
z=n->data[j].e;
if(a==x)/*如果m,n行相等*/
{
if(b==y)/*如果行列都相等*/
{
if(c-z!=0)/*如果m-n!=0*/
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c-z;
k++;
}
i++,j++;/*无论是否m-n==0i,j都要+1*/
}
else if(b<y)/*如果行相等但是列不相等q下一个三元组应该取坐标相对较小的*/
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c;
k++;
i++;
}
else if(b>y)
{
num[x]++;
q->data[k].i=x;
q->data[k].j=y;
q->data[k].e=-z;
k++;j++;
}
else
printf("不可能出现的事情\n");
}
else if(a>x)
{
num[x]++;
q->data[k].i=x;
q->data[k].j=y;
q->data[k].e=-z;
k++;j++;
}
else if(a<x)
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c;
k++;i++;
}
else
printf("不可能发生的事情\n");
}
if(i>m->tu&&j<=n->tu)/*如果m的三元组记录完了但是n的三元组没有记录完那么剩下的应该全复制*/
{
while(j<=n->tu)
{
num[n->data[j].i]++;
q->data[k].i=n->data[j].i;
q->data[k].j=n->data[j].j;
q->data[k++].e=-n->data[j++].e;
}
}
else if(j>n->tu&&i<=m->tu)/*如果n的三元组记录完了但是m的三元组没有记录完那么剩下的应该全复制*/
{
while(i<=m->tu)
{
n->data[m->data[i].i].i;
q->data[k].i=m->data[i].i;
q->data[k].j=m->data[i].j;
q->data[k++].e=m->data[i++].e;
}
}
q->tu=k-1;
if(num[1]==0)/*如果第一行没有非零原的话那m->rops[1]=0,这就是我修改的原因,如果按照书上写的话,那应该是1,对以后的操作有麻烦*/
{
q->rpos[1]=0;
j=0;
}
else/*否则记1*/
{
q->rpos[1]=1;
j=num[1];
}
for(i=2;i<=q->mu;i++)/*运算*/
{
if(num[i]==0)
q->rpos[i]=0;/*当前这一行并没有非零元所以记录1*/
else/*否则记录所对应的序列号*/
{
q->rpos[i]=j+1;
j+=num[i];
}
if(j>=q->tu)/*如果j的数量已经等于所有非零原的数量,那就应该退出循环*/
break;
}
while(i<=q->mu)/*如果半路退出循环,那么剩下的每行,都没有非零原*/
{
i++;
q->rpos[i]=0;
}
}
}
void addsmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q)/*稀疏矩阵相加*/
{
int i,j,k,a,b,c,x,y,z,*num;
q->mu=m->mu>n->mu?m->mu:n->mu;
q->nu=m->nu>n->nu?m->nu:n->nu;
q->tu=0;
if(!(num=(int *)malloc((q->mu+1)*sizeof(int))))
{
printf("创建空间失败\n");
exit(1);
}
if(!(q->rpos=(int *)malloc((q->mu+1)*sizeof(int))))
{
printf("创建空间失败\n");
exit(1);
}
for(i=1;i<=q->mu;i++)
num[i]=0;
if(m->tu==0)
smatrix(n,q);
else if(n->tu==0)
smatrix(m,q);
else
{
i=j=k=1;
while(i<=m->tu&&j<=n->tu)
{
a=m->data[i].i;
b=m->data[i].j;
c=m->data[i].e;/*分别记录m的3元组的数据*/
x=n->data[j].i;
y=n->data[j].j;
z=n->data[j].e;
if(a==x)/*如果m,n行相等*/
{
if(b==y)/*如果行列都相等*/
{
if(c+z!=0)/*如果m+n!=0*/
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c+z;
k++;
}
i++,j++;/*无论是否m+n==0i,j都要+1*/
}
else if(b<y)/*如果行相等但是列不相等q下一个三元组应该取坐标相对较小的*/
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c;
k++;
i++;
}
else if(b>y)
{
num[x]++;
q->data[k].i=x;
q->data[k].j=y;
q->data[k].e=z;
k++;j++;
}
else
printf("不可能出现的事情\n");
}
else if(a>x)
{
num[x]++;
q->data[k].i=x;
q->data[k].j=y;
q->data[k].e=z;
k++;j++;
}
else if(a<x)
{
num[a]++;
q->data[k].i=a;
q->data[k].j=b;
q->data[k].e=c;
k++;i++;
}
else
printf("不可能发生的事情\n");
}
if(i>m->tu&&j<=n->tu)/*如果m的三元组记录完了但是n的三元组没有记录完那么剩下的应该全复制*/
{
while(j<=n->tu)
{
num[n->data[j].i]++;
q->data[k].i=n->data[j].i;
q->data[k].j=n->data[j].j;
q->data[k++].e=n->data[j++].e;
}
}
else if(j>n->tu&&i<=m->tu)/*如果n的三元组记录完了但是m的三元组没有记录完那么剩下的应该全复制*/
{
while(i<=m->tu)
{
n->data[m->data[i].i].i;
q->data[k].i=m->data[i].i;
q->data[k].j=m->data[i].j;
q->data[k++].e=m->data[i++].e;
}
}
q->tu=k-1;
if(num[1]==0)/*如果第一行没有非零原的话那m->rops[1]=0,这就是我修改的原因,如果按照书上写的话,那应该是1,对以后的操作有麻烦*/
{
q->rpos[1]=0;
j=0;
}
else/*否则记1*/
{
q->rpos[1]=1;
j=num[1];
}
for(i=2;i<=q->mu;i++)/*运算*/
{
if(num[i]==0)
q->rpos[i]=0;/*当前这一行并没有非零元所以记录1*/
else/*否则记录所对应的序列号*/
{
q->rpos[i]=j+1;
j+=num[i];
}
if(j>=q->tu)/*如果j的数量已经等于所有非零原的数量,那就应该退出循环*/
break;
}
while(i<=q->mu)/*如果半路退出循环,那么剩下的每行,都没有非零原*/
{
i++;
q->rpos[i]=0;
}
}
}
void multsmatrix(tsmatrix *m,tsmatrix *n,tsmatrix *q)/*稀疏矩阵相乘*/
{
int i,j,k,l,o,p,x,y,*a,*num;
if(!(a=(int *)malloc(((m->mu+1)*(n->nu+1))*sizeof(int))))/*创建一个跟q相同大小的空间用来记录此坐标是否已经输入一个数*/
{
printf("开辟空间失败\n");
exit(1);
}
if(m->nu!=n->mu)
{
printf("不匹配\n");
exit(1);
}
q->mu=m->mu,q->nu=n->nu,q->tu=0;/*初始化*/
if(!(num=(int *)malloc((m->mu+1)*sizeof(int))))
{
printf("开辟空间失败\n");
exit(1);
}
if(!(q->rpos=(int *)malloc((q->mu+1)*sizeof(int))))
{
printf("空间开辟失败");
exit(1);
}
for(i=1;i<=q->mu;i++)
num[i]=0;
if(m->tu*n->tu!=0)
{
for(i=1;i<=m->mu;i++)/*初始化a数组*/
for(j=1;j<=n->nu;j++)
a[i*n->nu+j]=0;
for(i=1;i<=m->tu;i++)
{
o=m->data[i].i;
p=m->data[i].j;
if(n->rpos[p]==0)
continue;
l=p+1;
while(n->rpos[l]==0&&l<=n->mu)
l++;
if(l>n->mu)
j=n->tu+1;
else
j=n->rpos[l];
for(k=n->rpos[p];k<j;k++)/*k-j的范围是本行非零远的个数*/
{
x=n->data[k].i;/*x,y分别是n->data[k]的行和列*/
y=n->data[k].j;
if(a[o*n->nu+y]!=0)
q->data[a[o*n->nu+y]].e+=m->data[i].e*n->data[k].e;/*如果此空间已经输入一个数了,那么在相应的位置累加*/
else
{
q->data[++q->tu].e=m->data[i].e*n->data[k].e;
q->data[q->tu].i=o;
q->data[q->tu].j=y;
a[o*n->nu+y]=q->tu;/*此位置记录q->tu*/
num[o]++;
}
}
}
for(i=1;i<=q->mu;i++)
printf("%d ",num[i]);
if(num[1]==0)/*如果第一行没有非零原的话那m->rops[1]=0,这就是我修改的原因,如果按照书上写的话,那应该是1,对以后的操作有麻烦*/
{
q->rpos[1]=0;
j=0;
}
else/*否则记1*/
{
q->rpos[1]=1;
j=num[1];
}
for(i=2;i<=q->mu;i++)/*运算*/
{
if(num[i]==0)
q->rpos[i]=0;/*当前这一行并没有非零元所以记录1*/
else/*否则记录所对应的序列号*/
{
q->rpos[i]=j+1;
j+=num[i];
}
if(j>=q->tu)/*如果j的数量已经等于所有非零原的数量,那就应该退出循环*/
break;
}
while(i<=q->mu)/*如果半路退出循环,那么剩下的每行,都没有非零原*/
i++,q->rpos[i]=0;
}
}

❸ 稀疏矩阵的压缩存储思想

为了节省存储空间并且加快处理速度,需要对这类矩阵进行压缩存储,压缩存储的原则是:不重复存储相同元素;不存储零值元素。稀疏矩阵,有三元组表示法、带辅助行向量的二元组表示法(也即行逻辑链表的顺序表),十字链表表示法等。算法基本思想:num[col]:第col列的非零元素个数;cpot[col]:第col列第一个非零元在b.data中的恰当位置;在转置过程中,指示该列下一个非零元在b.data中的位置。

❹ 特殊矩阵和稀疏矩阵哪一种压缩存储后失去随机存取的功能为什么

稀疏矩阵压缩存储后,必会失去随机存取功能。稀疏矩阵在采用压缩存储后将会失去随机存储的功能。因为在压缩存储当中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,即三元组表,它不是简单的向量,所以无法用下标直接存取矩阵中的元素。

❺ 稀疏矩阵的压缩存储只需要存储什么

非零元素。

对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费。为了节省存储空间,可以只存储其中的非0元素。

(5)稀疏矩阵的压缩存储的作用扩展阅读

稀疏矩阵算法的最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构。稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关。

❻ 矩阵的压缩存储是什么

二维数组在形式上是矩阵,因此一般用二维数组来存储矩阵。在不压缩存储的情况下,矩阵采用按行优先或按列优先方式存储,占用的存储单元数等于矩阵的元素个数。在实际应用中,经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。

为了节省存储空间,可以利用特殊矩阵的规律,对它们进行压缩存储,也就是说为多个值相同的元素只分配一个存储单元,对零元素不分配空间。适合压缩存储的矩阵一般是值相同的元素或者零元素在矩阵中分布有一定规律的特殊矩阵和稀疏矩阵。常见的特殊矩阵有对称矩阵、三角矩阵和对角矩阵。

❼ 如何在工作空间查看稀疏矩阵

稀疏矩阵

设矩阵Amn中有s个非零元素,若s远远小于矩阵元素的总数(即s<<m×n),则称A为稀疏矩阵。

1、稀疏矩阵的压缩存储
为了节省存储单元,可只存储非零元素。由于非零元素的分布一般是没有规律的,因此在存储非零元素的同时,还必须存储非零元素所在的行号、列号,才能迅速确定一个非零元素是矩阵中的哪一个元素。稀疏矩阵的压缩存储会失去随机存取功能。
其中每一个非零元素所在的行号、列号和值组成一个三元组(i,j,aij),并由此三元组惟一确定。
稀疏矩阵进行压缩存储通常有两类方法:顺序存储和链式存储。链式存储方法【参见参考书目】。

2、三元组表
将表示稀疏矩阵的非零元素的三元组按行优先(或列优先)的顺序排列(跳过零元素),并依次存放在向量中,这种稀疏矩阵的顺序存储结构称为三元组表。
注意:
以下的讨论中,均假定三元组是按行优先顺序排列的。
【例】下图(a)所示的稀疏矩阵A的三元组表表示见图(b)

(1)三元组表的类型说明
为了运算方便,将矩阵的总行数、总列数及非零元素的总数均作为三元组表的属性进行描述。其类型描述为:
#define MaxSize 10000 //由用户定义
typedef int DataType; //由用户定义
typedef struct { //三元组
int i,j;//非零元的行、列号
DataType v; //非零元的值
}TriTupleNode;

typedef struct{ //三元组表
TriTupleNode data[MaxSize]; //三元组表空间
int m,n,t; //矩阵的行数、列数及非零元个数
}TriTupleTable;

(2) 压缩存储结构上矩阵的转置运算
一个m×n的矩阵A,它的转置矩阵B是一个n×m的矩阵,且:
A[i][j]=B[j][i],0≤i<m,0≤j<n,
即A的行是B的列,A的列是B的行。
【例】下图中的B和上图中的A互为转置矩阵。


①三元组表表示的矩阵转置的思想方法
第一步:根据A矩阵的行数、列数和非零元总数确定B矩阵的列数、行数和非零元总数。
第二步:当三元组表非空(A矩阵的非零元不为0)时,根据A矩阵三元组表的结点空间data(以下简称为三元组表),将A的三元组表a->data置换为B的三元组表b->data。

②三元组表的转置
方法一:简单地交换a->data中i和j中的内容,得到按列优先顺序存储倒b->data;再将b->data重排成按行优先顺序的三元组表。
方法二:由于A的列是B的行,因此,按a->data的列序转置,所得到的转置矩阵B的三元组表b->data必定是按行优先存放的。
按这种方法设计的算法,其基本思想是:对A中的每一列col(0≤col≤a->n-1),通过从头至尾扫描三元组表a->data,找出所有列号等于col的那些三元组,将它们的行号和列号互换后依次放人b->data中,即可得到B的按行优先的压缩存贮表示。具体实现参见【动画演示】

③具体算法:
void TransMatrix(TriTupleTable *b,TriTupleTable *a)
{//*a,*b是矩阵A、B的三元组表表示,求A转置为B
int p,q,col;
b->m=a->n; b->n=a->m; //A和B的行列总数互换
b->t=a->t; //非零元总数
if(b->t<=0)
Error("A=0"); //A中无非零元,退出
q=0;
for(col=0;col<a->n;col++) //对A的每一列
for(p=0;p<a->t;p++) //扫描A的三元组表
if(a->data[p].j==col){ //找列号为col的三元组
b->data[q).i=a->data[p].j;
b->data[q].j=a->data[p].i;
b->data[q].v=a->data[p].v;
q++;
}
} //TransMatrix

④算法分析
该算法的时间主要耗费在col和p的二重循环上:
若A的列数为n,非零元素个数t,则执行时间为O(n×t),即与A的列数和非零元素个数的乘积成正比。
通常用二维数组表示矩阵时,其转置算法的执行时间是O(m×n),它正比于行数和列数的乘积。
由于非零元素个数一般远远大于行数,因此上述稀疏矩阵转置算法的时间大于通常的转置算法的时间。

上一页

3、带行表的三元组表
为了方便某些矩阵运算,在按行优先存储的三元组表中,加入一个行表来记录稀疏矩阵中每行的非零元素在三元组表中的起始位置。这就是带行表的三元组表。
(1)类型描述
#define MaxRow l00 //在三元组表定义前加入此最大行定义
typedef struct {
TriTupleNode data[MaxSize];
int RowTab[MaxRow];//行表,应保证m≤MaxRow
int m,n,t;
}RTriTupleTable;

(2)带行表的三元组表的操作
① 对于任给行号i(0≤i≤m-1),能迅速地确定该行的第一个非零元在三元组表中的存储位置为RowTab[i]
② RowTab[i](0≤i≤m-1)表示第i行之前的所有行的非零元数。
③ 第i行上的非零元数目为RowTab[i+1]-RowTab[i](0≤i≤m-2)
④ 最后一行(即第m-l行)的非零元数目为t-RowTab[m-1](t为矩阵的非零元总数)
注意:
若在行表中令RowTab[m]=t(要求MaxRow>m)会更方便 些,且t可省略。
带行表的三元组表可改进矩阵的转置算法,具体【参阅其它参考书】。

4.稀疏矩阵压缩存储方式分析
(1) 三元组表和带行表的三元组表的特点
相应的算法描述较为简单,但这类顺序存储方式对于非零元的位置或个数经常发生变化的矩阵运算就显得不太适合。
【例】执行将矩阵B相加到矩阵A上的运算时,某位置上的结果可能会由非零元变为零元,但也可能由零元变为非零元,这就会引起在A的三元组表中进行删除和插人操作,从而导致大量结点的移动。对此类运算采用链式存储结构为宜。

(2)稀疏矩阵的链式结构
稀疏矩阵的链式结构有十字链表等方法,适用于非零元变化大的场合,比较复杂,可【参阅其它参考书】。

阅读全文

与稀疏矩阵的压缩存储的作用相关的资料

热点内容
为什么黑程序员 浏览:160
程序员男生 浏览:453
戴尔文件夹内文件怎么置顶 浏览:580
云服务器6m网速 浏览:722
vivo手机中国联通服务器地址 浏览:860
工程总控编译失败 浏览:704
燕赵红枫app如何下载 浏览:867
php查杀软件 浏览:877
教育管理学pdf 浏览:547
服务器均衡怎么使用 浏览:626
linux中jps 浏览:954
单片机实验感想 浏览:560
程序员级别数学算法逻辑 浏览:900
2k21公园怎么换服务器 浏览:724
php释放数据库连接 浏览:722
php网页抓取工具 浏览:726
android设置对齐方式 浏览:23
linux创建网页 浏览:280
净化车间门算法 浏览:934
安卓怎么搞jpg 浏览:546