㈠ 低碳钢和铸铁在压缩时的力学性能有什么区别
1、材料性能不同:
低碳钢是塑性材料,低碳钢抗压能力非常强,而铸铁是脆性材料,抗压能力远远大于抗拉能力。
2、压缩后结果不同:
低碳钢抗压能力非常强,且抗拉抗压能力相当,所以最后会被压扁但是不会断裂,而铸铁的抗压能力远远大于抗拉能力,最后会被内部的正应力给拉断,断口呈斜45度角。
3、压缩时表现不同:
低炭钢压缩时的力学性能:弹性阶段与拉伸时相同,杨氏模量、比例极限相同,屈服阶段,拉伸和压缩时的屈服极限相同,屈服阶段后,试样越压越扁无颈缩现象,测不出强度极限。
铸铁拉伸压缩时的力学性能:强度极限是唯一指标,断口形状为沿斜截面错动而破坏,断口与截面成角,抗压强度极限为拉伸时的4~5倍,沿斜截面错动而破坏,断口与斜截面约略成角,只适合作受压构件。
(1)铸铁压缩和拉伸的强度极限扩展阅读:
材料力学性能是指材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。
材料力学性能是材料的宏观性能。设计各种工程结构选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测定。
㈡ 根据拉伸、压缩和扭转试验结果,综合分析低碳钢和铸铁的力学性能
可以得出低碳钢的韧性比铸铁强,铸铁比低碳钢脆性高。低碳钢的屈服强度高于铸铁。(铸铁很脆,几乎不存在屈服强度),但是铸铁的拉伸强度大于低碳钢,因为铸铁含碳量高于低碳钢。 冲击强度低碳钢明显要优于铸铁。
低碳钢为塑性材料,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。
(2)铸铁压缩和拉伸的强度极限扩展阅读:
以上变形假设和结论并不普遍适用于所有棱柱形杆。如薄壁的Z形截面杆在通过横截面形心的拉力作用下,除发生伸长变形外,两个翼缘还在各自的纵向平面内弯曲,即使在离外力作用截面相当远处,横截面也不再保持为平面,其上的正应力并非均匀分布,且有剪应力存在;这一现象已为薄壁杆件的约束扭转理论所论证。
显然就静力学的观点来看,此时整个横截面上的正应力却仍然只组成通过横截面形心的合力N,而剪应力不组成合力和合力矩。
㈢ 分析铸铁压缩破坏的原因,并与其拉伸作比较
铸铁为一种脆性变形试件。在强度极限拉伸时,铸铁在非常微小的变形情况下突然断裂,可以听到“嘣”的一声。断裂后几乎测不到残余变形。
低碳钢为塑性材料,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。
铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。
(3)铸铁压缩和拉伸的强度极限扩展阅读:
铸铁的拉伸破坏发生在横截面上,是由最大拉应力造成的。压缩破坏发生在约50-55度斜截面上,是由最大切应力造成的。扭转破坏发生在45度螺旋面上,是由最大拉应力造成的。
低碳钢拉伸破坏的主要原因是最大切应力引起塑性屈服。引起铸铁断裂的主要原因是最大拉应力引起脆性断裂,这说明低碳钢的抗能力大于抗剪能力,而铸铁抗剪能力大于抗拉能力。
㈣ 比较铸铁在拉伸和压缩时强度极限
拉伸和压缩时强度极限如下:
对于受拉伸或压缩的等截面直杆(棱柱形杆),根据杆受力时横截面保持为平面的假设,则横截面上无剪应力τ,而其正应力σ为均匀分布,其值等于轴力N 除以横截面面积A,即σ=N/A;当材料在线弹性范围内工作时。
根据胡克定律(见材料力学),杆内一点处的轴向(纵向)线应变为ε=σ/E(E为材料的拉、压弹性模量);在轴力N 为常量的长度L范围内,绝对线变形ΔL的计算公式为ΔL=NL/EA。
(4)铸铁压缩和拉伸的强度极限扩展阅读:
如变截面直杆受拉伸(压缩)时,横截面上正应力亦非均匀分布,且有剪应力存在。根据弹性力学的分析结果,矩形截面的等厚度楔形板受拉伸时,如果顶角α=20°,则横截面上的最大正应力与按公式 σ=N/A算得的值相比,两者相差2%,而当 α=60°时,两者相差竟达20%。
在工程计算中,对于拉杆通常只要求保证其具有足够的强度,即工作应力不超过容许应力(材料的破坏应力除以安全系数);必要时也要求控制其变形量。对于压杆,其正常工作的条件往往不是受强度控制,而是受稳定性控制。
㈤ 铸铁的抗拉性和抗压性能有何差异
铸铁承受压缩的能力远远大于承受拉伸的能力。抗压强度远远超过抗拉强度,这是脆性材料的一般属性]
抗拉强度是试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。
抗压强度是抗压强度(compressive
strength)代号σbc,指外力是压力时的强度极限
,对铸铁来说,由于C以石墨的形式存在,降低了材料的断面尺寸,抗拉强度很低,但可以通告改变石墨的形态来改变铸铁的抗拉强度,如球化处理等!
抗压强度是受压应力的,铸铁基体相是铁素体和珠光体,这和普通碳钢基本一样,铸铁的抗压强度没有什么影响
以灰口铸铁HT200为例:抗拉强度200N/mm²、抗弯强度400N/mm²、抗压强度750N/mm²;
㈥ 铸铁的抗压强度是多少
一般铸铁的允许受压强度数据是200MPa,大约相当于每平方毫米面积上承受20公斤压力。这样的铸铁属于“HT200”(灰铸铁)。还有抗压强度高一些的例如HT250等。
铸件冷却时,表层及薄截面处,往往产生白口。白口组织硬而脆、加工性能差、易剥落。因此必须采用退火(或正火)的方法消除白口组织。退火工艺为:加热到550-950℃保温2~5 h,随后炉冷到500-550℃再出炉空冷。在高温保温期间 ,游离渗碳体和共晶渗二次渗碳体和共析渗碳体也分解,发生石墨化过程。由于渗碳体提高铸件的机械性能。
有时正火也是球铁表面淬火在组织上的准备、正 火分高温正火和低温正火。高温正火温度一般不超过950~980℃,低温正火一般加热到共折温度区间820~860℃。正火之后一般还需进行回火处理,以消除正火时产生的内应力,以达到铸件白口的高温石漠化退火。
(6)铸铁压缩和拉伸的强度极限扩展阅读:
公式
p=P/A
式中 p为抗压强度,以每平方吋多少磅(psi)、每平方公分多少公斤为单位,P为压力,以磅、公斤为单位,A为剖面面积,以平方公分、平方吋为单位。
大致说来,火成岩、石英岩和特别坚硬的硅质砂岩,具有最大的抗压强度。例如一些未风化之玄武岩,其无侧束抗压强度可达到60,000psi。影响岩石抗压强度的因素很多,其最重要的有三种因素:组织、胶结物的性质、压力的方向等。