A. 地堪当中的钻孔波速测试作用是什么
1 测试剪切波速,计算等效剪切波速,确定覆盖层厚度,划分场地类别
2 测试纵横波速,计算土动力参数
3 配合土的室内实验,提供超限建筑时程分析所需覆盖层内各土层剪切波速
B. 剪切波波速测试的剪切波波速测试
波速测试适用于测定各类岩土体的压缩波、剪切波或瑞利波的波速,可根据任务要求,采用单孔法、跨孔法或面波法。利用铁球水平撞击木板,使板与地面之间发生运动,产生丰富的剪切波,从而在钻孔内不同高度处分别接收通过土层向下传播的剪切波。因为这种竖向传播的路径接近于天然地层由基岩竖直向上传播的情况,因此对地层反应分析较为有用。
波速试验作用:
1)划分场地类型
2)计算场地基本周期
3)提供地震反应分析所需的地基土动力参数
4)判别地基土液化可能性
5)评价地基处理效果 测试前的准备工作应符合下列要求:
(1)测试孔应垂直;
(2)当剪切波振源采用锤击上压重物的木板时,木板的长向中垂线应对准测试孔中心,孔口与木板的距离宜为1~3m;板上所压重物宜大于400kg;木板与地面应紧密接触;
(3)当压缩波振源采用锤击金属板时,金属板距孔口的距离宜为1~3m.
测试工作应符合下列要求:
(1)测试时,应根据工程情况及地质分层,每隔1~3m布置一个测点,并宜自下而上按预定深度进行测试;
(2)剪切波测试时,传感器应设置在测试孔内预定深度处固定,沿木板纵轴方向分别打击其两端,可记录极性相反的两组剪切波波形;
(3)压缩波测试时,可锤击金属板,当激振能量不足时,可采用落锤或爆炸产生压缩波。
测试工作结束后,应选择部分测点作重复观测,其数量不应少于测点总数的10%。
操作原理单孔法波速测试采用的振源很多,如:爆破、空气压缩枪、弹簧式S波激发装置、火箭筒等等。但在一般的场地剪切波速测试中最常用的是敲击板激振源。敲击板激振源:剪切波的测试设备—敲击板激振源将一块弹性好的木板(木板长约2米,宽约0.4—0.5米,厚约0.1米)受锤击的两头包上铁板,放在平整的地面上,上面压上重物,使木板与地面紧密接触,然后敲击木板两侧,这样木板就给地面一个水平冲击力,激起土层的剪切振动。激发的振动主要为SH波。
敲击板激振源: 剪切波的测试设备—敲击板激振源在敲击冲量一定的条件下,激发的SH波振幅随木板上重物重量的增大而增大,但超过一定值后影响会有所减少;长板效果比短板好;板与地面的接触条件对激振效果影响较明显,板底钉有钉齿、地面上泼水或水泥浆以增大木板与地面接触的紧密程度可改善激振效果。 测试场地宜平坦;测试孔宜设置一个振源和两个接收孔,并布置在一条直线上。
测试孔的间距在土层中宜取2~5m,在岩层中宜取8~15m;测试时,应根据工程情况及地质分层,每隔1~2m布置一个测点。
钻孔应垂直,并宜用泥浆护壁或下套管,套管壁与孔壁应紧密接触。
测试时,振源接收孔内的传感器应设置在同一水平面上。
测试工作可采用下列方法:
(1)当振源采用剪切波锤时,宜采用一次成孔法;
(2)当振源采用标准贯入试验装置时,宜采用分段测试法。
当测试深度大于15m时,必须对所有测试孔进行倾斜度及倾斜方位的测试;测点间距不应大于1m.
当采用一次成孔法测试时,测试工作结束后,应选择部分测点作重复观测,其数量不应少于测点总数的10%;也可采用振源孔和接收孔互换的方法进行检测。
C. 剪切波波速测试的相关公式
压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:
(1)确定压缩波的时间,应采用竖向传感器记录的波形;
(2)确定剪切波的时间,应采用水平传感器记录的波形。
压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正:
式中 T ——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间);
TL ————压缩波或剪切波从振源到达测点的实测时间(s);
K ——斜距校正系数;
H ——测点的深度(m);
H0 ——振源与孔口的高差(m),当振源低于孔口时,H0为负值;
L ——从板中心到测试孔的水平距离(m)。
时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。
波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。
每一波速层的压缩波波速或剪切波波速,应按下式计算:
式中 V——波速层的压缩波波速或剪切波波速(m/s);
△H——波速层的厚度(m);
△T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:
(1)确定压缩波的时间,应采用水平传感器记录的波形;
(2)确定剪切波的时间,应采用竖向传感器记录的波形。
由振源到达每个测点的距离,应按测斜数据进行计算。
每个测试深度的压缩波波速及剪切波波速,应按下列公式计算:
式中 VP——压缩波波速(m/s);
VS——剪切波波速(m/s);
TP1——压缩波到达第1个接收孔测点的时间(s);
TP2——压缩波到达第2个接收孔测点的时间(s);
TS1——剪切波到达第1个接收孔测点的时间(s);
TS2——剪切波到达第2个接收孔测点的时间(s);
S1——由振源到第1个接收孔测点的距离(m)
S2——由振源到第2个接收孔测点的距离(m)
△S——由振源到两个接收孔测点距离之差(m)。
《高层建筑岩土工程勘察规程JGJ72-2004》条文说明
D. 横波(剪切波)波速测试法
一、跨孔法
跨孔法测试中须将振源、检波器放在不同钻孔中的同一高程位置上,根据孔水平间距和波传播历时,即可求出相应波速。由于该法的原理简单,测试结果可靠,这一方法一经提出很快在国际上得到了广泛的应用。
1.跨孔法波速测试的特点
(1)跨孔法波速测试可应用于各种地层,在地下水位以上和地下水位以下都有使用;
(2)在振源孔中采用垂直剪切冲击,能够产生水平传播、垂直偏振的剪切波,可在原位上测得土层中剪切波的波速;
(3)在钻孔间距适当时,跨孔法波速测试可测定地层中低速软弱夹层的剪切波速值;
(4)它在测试中把振源和接收器都埋设在土中,现场测试受外界干扰较少,因此也可以用于在已有的结构物下的波速测试。
(5)由于跨孔法测试技术的测试深度较大,因此从理论上讲,可以测试到钻孔所能达到的最大深度。
2.跨孔法试验仪器设备
跨孔试验主要由钻孔、激振、检波器和记录波信号等环节组成。所需试验仪器设备则包括振源、接收器、放大器、记录器等。
(1)振源 在工程中,跨孔试验的主要测试对象是地层所传播的剪切波。这就要求振源产生的S波与P波能量之比尽可能地高。爆炸振源是以往地震勘探中的常用振源。钻孔内(通常充水)的雷管或少量炸药的爆炸,可产生地震波和流体膨胀产生压缩波,作用于孔壁之后传至地层,在地层中可同时产生P波和S波。改变爆炸能量可定量控制S波和P波间的能量分配,爆炸能量越高,S波能量越大,这种效应在浅层更加明显。
由于S波是P波的反射波,在上述一个复杂的波序列上识别S波的初始点将比较困难。
跨孔法波速测试采用的振源有两种:爆炸振源和机械振源。现在大多用的是机械振源。
井下剪切波锤是一种常用的机械型振源(图7-1),它适用于各类土层。这种装置由一个固定的圆筒体和一个滑动重锤组成。测试时,把该装置放到钻孔某一深度处,通过地面的液压装置将4个活塞推出使筒体紧贴井壁,然后向上拉连接在锤顶部的钢丝绳,使活动重锤向上冲击固定筒体。此时会产生剪切振动。由于振源作用力方向的改变,使接收到的SV波初至相位差180°,这对辨别SV波的初至是有益的。完成一个测点的测试后,可以通过地面的液压装置将4个活塞缩回,再放到另一个深度,继续进行测试。
(2)接收器 跨孔法波速测试时,无论什么样的振源,都会产生复合波。这就要求接收器既能观察到垂直振动分量,又能观察到水平振动分量以便更好地识别剪切波到达的时刻。所以一般采用三分量检波器。其中竖向分量主要用来识别SV波。同时,三分量波形记录器还可以进行互相校核资料、分析结果的可靠性。
图7-1 井下剪切波锤结构简图
(3)放大器 跨孔法波速测试可以采用普通多通道放大器。各通道必须有较一致的相位特性,并配有可调节的增益装置。放大器的放大倍数一般要求大于2000;同时要求内部噪音小;频率特性适宜,抗工频干扰能力强。
(4)记录器 跨孔法波速测试所用的记录器要求具有0.2ms的记录、扫描能力,其扫描速率可以调节,以便波形的识别。目前国内常用的有SC-10、SC-16、SC-18型紫外线感光记录示波器。
3.现场测试方法
(1)测试前的准备工作 测试前的准备工作包括:钻孔数量、钻孔尺寸、钻孔布置方法和钻孔间距的确定和记录、下套管和灌浆、钻孔垂直度测量等方面的工作。
(2)现场测试方法 跨孔法波速测试方法有两种:①一次成孔测试法,它是当用于跨孔测试的钻孔数量、深度、孔径和孔距等设计好之后,将所有的钻孔一次性钻完,然后将套管下至距孔底2m处,然后灌浆,待浆液凝固后,便可进行测试;②分段钻进分段测试法,它一般是用三台钻机同时钻进,当钻至预定深度后提出钻具,与此同时,将检波器放入孔底同一标高,用重锤敲击取土器使其产生波。该方法主要用于厚度不太大的第四纪土层。
4.资料整理
(1)波形记录的现场识别 波形识别是跨孔法波速测试的重要工作。跨孔法波速测试中所记录的波动信号曲线主要由体波组成。一般分三个阶段:第一阶段是从零时开始至直达波能量的到达,其信号除受外部干扰出现毛刺外,基本上是一条接近于直线的平稳段;第二段从波的第一个初至起至第二个初至止,此段属于P波段,振幅小,频率高;第三段是以S波为主的部分,振幅大,频率低。
(2)波形的室内判读 室内判读主要是精确地判读出P 波初至时间和第一个 S 波到达的时间。
(3)数据的整理和计算 完成波形识别工作后,记录两接收孔间 P波和S波的传播时间tP、tS。根据振源孔和测试孔之间的距离,以及钻孔垂直度量测结果,求出直达波的传播距离L,并由式(7-5)分别求出P波和S波的波速tP、tS:
土体原位测试与工程勘察
式中:υP,υS为分别为P波和S波的波速(m/s);L为直达波的传播距离(m);tP,tS分别为P波和S波的传播时间(s)。
同一测点P波和S波的波速的测试误差,应控制在5%~10%之内,否则必须分析原因或者重新测试。
二、单孔法
单孔法波速测试是在一个垂直钻孔中进行波速测试的方法。按激振和检波器在钻孔中所处的位置不同,单孔法又可分为四种:①地表激发,孔中接收(下孔法);②孔中激发,地表接收(上孔法);③孔中激发,孔中接收;④孔中激发,孔底接收。
1.测试设备
除了振源外,单孔法波速测试的其他仪器设备与跨孔法基本相同。单孔法波速测试常选用的振源为剪切波振源,其优势波为SH波(SH波是一种剪切波,其质点振动方向平行于地面)和SV波,具有可重复性和可反向性。一般采用(图7-2)所示的激振方式:
图7-2 单孔法的测试工作原理示意图
2.测试方法
现场测试工作包括如下内容:钻孔、设置振源和检波器、确定测点间距。
(1)钻孔:钻孔附近地面应尽可能干净,钻孔时应尽量减少孔壁土扰动,待测孔钻到预定深度时,如地层软弱应下套管护壁,套管与孔壁间用灌浆和填砂法处理。
(2)设置振源:用敲板法作振源时,在距孔口1.0~3.0m处放置一长度2.0~3.0m的木板或混凝土板,并与地面贴紧,上压5kN左右的重物,以防止板的滑移。板的中垂线应通过孔口,用锤沿板纵轴从两个相反方向水平敲击板端以产生水平剪切波。当板中心的高程与孔口相差较大时,应量测并记录下来,以便作修正之用。
(3)设置检波器:当检波器在孔内不同深度处接收剪切波时,应将其固定在孔壁。当只需测定地层中的P波时,检波器就不一定要和孔壁贴紧,但在这种情况下,孔中必须注满水或泥浆。有时为了整理资料上的方便可将两只检波器同时放入孔中。根据它们的间距,用两个检波器接收同一激振下初至波传播的时差来计算波速,提高分析精度。
(4)测点间距的确定:测点间距原则上应使相邻两点时间差大于记录上可读精度。对于土层,一般以0.5~2.0m为宜。当有较薄夹层时,应适当调整测点间距使得薄夹层中至少布置两个测点。
3.测试资料的整理
单孔法波速测试时,P波和S波识别方法与跨孔法相同。但当振源激发点距孔口距离较大时,应作修正。其方法是将实测斜距行走时间(t)按式(7-6)换算成垂距行走时间(t′):
土体原位测试与工程勘察
式中:t′为修正后的垂距行走时间(s);t为在记录上读取的斜距行走时间(s);h为孔中检波点距孔口距离(s);x为孔口距振源激发点的距离(s)。
E. 压缩波的正文
在气体动力学中,波是扰动区和未扰动区的分界面。若穿过此界面,扰动使气体的压强升高,则此波称为压缩波;反之称为膨胀波。一维非定常流动中的压缩波的形成可用图1说明。图1a上方表示一个原来装有压强和密度分别为p0,和的静止气体的管道。当活塞以无限小的速度dv向右运动时,活塞右侧相邻的一层气体被压缩,压强和密度分别升高一个微量dp和,并被迫以与活塞同样的速度向右运动。接着,已运动的气体又推动右边相邻的气体。如此一层一屋往右传播,即活塞的运动在静止气体中产生扰动并以一定的速度在未扰动气体中传播。这种微弱扰动的传播速度等于声速。过一定时间后,扰动传播到A-A'位置,AA'面便是扰动和未扰动区域的分界面。这个分界面就是压缩波。图1a下方表示在某一对应的瞬间气体压强p沿管长x的分布。反之,若活塞以速度dv向左运动,产生的扰动使活塞右侧气体压强和密度减小,相应的波称为膨胀波。压缩波和膨胀波有一个根本区别:对于一系列前后相继的压缩波(图1b),后面的波的传播速度比前面的波快,最终可能叠在一起形成一道突跃的压缩波,即激波;膨胀波则相反,不会形成突跃的膨胀波。一维非定常波主要用来分析各种管道中的非定常流动。在二维和三维定常超声速气流中,扰动和未扰动区的分界面就是马赫波(见马赫锥)。超声速气流经过一系列马赫波膨胀加速,也称为膨胀波,若增压减速,则称为压缩波。定常超声速气流绕凸壁表面和凹壁表面的流动就是膨胀波和压编波的典型例子(图2)。当气流绕凸壁表面时(图2a),气流的马赫数逐渐增大,马赫角逐渐减小,依次的波逐渐向下游倾斜,形成向下游张开的一个扇形连续膨胀区(见普朗特-迈耶尔流动)。绕凹壁则情况相反(图2b),诸波依次有汇交的趋势,在诸压缩波汇交时,一系列微弱压缩波叠在一起,形成激波。在定常超声速气流中,气体速度,压强等的变化都是以压缩波、膨胀波或激波的形式出现的。
图1 一维非定常流动中的压缩波
图2 二维定常超声速气流中的膨胀波和压缩波
F. 剪切波波速测试的波速试验现场
天然地基,常常不是单一的匀质土体,而是具有多层结构的非匀质土体,为了解地基土
层的空间分层变化情况,提供与波速相关的岩土动力学参数、计算土层的剪切模量、了解地
基的软弱地层、分析地基土的类型和建筑物场地类别,进行地震土的地震反应计算等,必须
使用波速测井这种地球物理方法。
单孔波速测试的原理
当 S波穿过地层时,他们遇到构造不连续界面时会发生折射或反射,并使其振动方面发
生偏振。当发生偏振的 S波的岩石颗粒仅在水平面中运动时,称为 SH 波。当岩石颗粒在岩波传播方向的竖直平面里运动时,这中 S波称为 SV 波。
SH 波 水平偏振横波。质点在垂直于入射平面的方向上振动的波叫水平偏振
横波。
SV 波 垂直偏振横波。质点在入射平面内且与传播方向垂直振动的波叫垂直偏
振横波。
利用直达波的原理,由振源产生的压缩波(又称 P波)和剪切波(又称 SH 波),经过岩(土)体,被放置在孔中的三分量检波器接收,根据波传播的距离和走时计算出场地土的波速,进而评价场地土的工程性质。
原位测定压缩波(P波)、剪切波(SH 波)在岩(土)体中的传播速度,从而避免了室
内测试所带来的误差。
优点:直接对地层测试、结果相对精确且不需要任何场地(只要能成孔)。
当地面振源激发产生剪切波信号时,剪切波信号便从震源发出穿过地层介质,到达井下三分量探头,探头中的检波器,经过机电转换把地震的振动信号转换成电信号,通过电缆传送到波速测试仪,由测试仪器记录并显示剪切波波形。
(1).在测井工作中,井口、震源、测井探头三点构成了一个直角三角形。
(2).在测井过程中只要知道了两个测点的深度和剪切波的传播时间则两点间的深度之间地层介质的平均波速满足: 钻孔
测试剪切波的钻孔有一定的要求,主要如下:
孔径的要求:
按测井探头口径的需要,钻头一般经常使用 50~60mm、90~105mm、110~130mm,
根据测井需要,钻孔直径应该比测井探头直径大 3~125px。
钻孔井壁的要求:
井壁要求光滑,井径变化较小,上下一致。在松散和结构复杂的地层钻井,除
了更换钻具外,钻进的速度也要适当控制以保证钻孔质量。井孔的倾斜要求不能超
过 5°,否则测井资料的可靠程度大大降低。尤其跨孔法,对钻孔的要求更严,否
则误差较大。
测井对钻孔时间的要求:
一般测井的时间要求比较特殊,受到终孔时间的限制。一般来说,在钻机打完
井后,马上对钻进进行扩孔、泥浆护壁等工作,这些工作完成后立即开始进行测井。
打钻工作一般在白昼进行,在完工后 24 小时以内,应该完成波速测井的工作,为了
防止周围环境和人文干扰,测井有时要在夜深人静时进行,尤其受人文、交通干扰
较大的地区,选择合适的时间测井也是一种很好的防干扰措施。
钻孔附近地面应尽可能平整:
钻孔时应尽量减少孔壁土层扰动,待测孔钻到预定深度时,如地层软弱应立即
下套管护壁,套管与孔壁间应灌浆和填砂法处理,以保持套管与孔壁间的紧密接触。
关于使用各种套管的问题:
测量有套管钻孔的剪切波速度,实践证明还是比较不容易的。尽管有的文献曾
给出有套管钻孔的剪切波速度和无套管测量结果是一致的,但没有指出是如何测量,
如何处理才能得到与没有套管时测井的一致的结果。
对振源的要求
剪切波振源应采用锤和上压重物的木板,压缩波振源宜采用锤和金属板。
对木板激振源的一般尺寸要求:木板长约 2.5 米,宽约 0.3-0.5 米,厚约0.1 米。受锤击的
两头报上铁板;通过敲击木板两侧,这样木板就给地面一个水平冲击力,激起土层的剪切振
动。
大锤的要求:8 磅或 10磅。
现场测试注意事项
为获得高质量的波形纪录,测试前应调整好仪器设备,保证各设备可靠连接。另外,
现场要注意以下的问题。
1. 作为振源的木板应选用弹性和韧性较好的木板,不宜用铁板或水泥板。木板锤
击的两头可包上铁皮或用一块比木板截面稍大的铁板垫在木板两头以便多次
使用。
2. 井孔应与木板长轴线垂直,即井孔到木板的距离相等,这是保证木板两面敲击
后,剪切波恰好反向的一个基础。孔源距应是井孔到木板中心的垂直距离。
3. 木板与表土层耦合的好坏直接关系波形采集的好坏。现场可在选定放木板的地
方撒一层砂子,放上木板来回磨动,然后拿开木板,耦合好坏一目了然,在有
空缺处再撒砂子,反复数次可达到最佳效果。
4. 现场可将汽车直接压在木板上。无汽车可用重物。重物的重量应保证锤击时没
有大的位移,另外重物应尽可能在木板上均匀分配。当重物质量有限时,在木
板地面加带钢钉的铁板或木板打孔插钢筋。
5. 测剪切波时,锤击力要尽量保证水平。锤击要干净利索,避免二次或多次击打。
6. 每次放下或提升换能器到一个新深度应保留十几秒后再测,这样可避免泥浆扰
动干扰。
7. 在换能器上要配接吃力拉绳。根据经验,最好是钢丝细绳,细钢丝绳伸缩性小,
抗拉性强,不易缠绕。(探头带钢丝最好)
8. 测有泥浆护壁的钻孔,最好从孔底测起,避免因泥浆沉淀引起卡换能器和测量
深度不够情况。
9. 剪切波不能在水中传播,但根据实测经验,在有浓泥浆护壁的钻孔中,可以在
换能器不与钻孔壁紧密接触的情况下测得很好的S波震相,为测量提供了方便。
另外泥浆浓可以减少塌孔的可能性。
10. 测有套管的钻孔,要避免钢丝绳与套管直接接触。
11. 测量时如遇塌孔卡住换能器,在人力拉不动的情况下,最好将钻机用不带钻头
的钻杆放到合适深度,用冲洗的方法慢慢的提升,这样可保护换能器。
12. 在用气囊式换能器时,用高压气筒慢慢打气,打一下停一下,看是否已耦合,
如提不动,则耦合好。切忌连续打气,将气囊胀破。杠杆式可将换能器提到一
定高度后,放松电缆后,看是否下滑。
13. 随着测试深度的增加,有效信号的频率会有所降低,对数据的准确读取有一定
的影响(可选在有效波起跳点或第一波峰处)。
14. 随着测试深度的增大,S波信号能量逐渐减小。为提高有效信号的幅度,单纯
增加激发能量也会增大噪声的干扰。在选择适当激发能量的同时,采用多次叠
加的方法不仅能提高有效信号能量,还可压制噪声。
G. 光面爆破法的分区起爆顺序
光面爆破掘进时有两种施工方案,即全断面一次爆破和预留光面爆破层分次爆破。
全断面一次爆破时,按起爆顺序分别装入多段毫秒电雷管或非电塑料导爆管起爆系统起爆,起爆顺序为掏槽孔→辅助孔→崩落孔→周边孔,多用于掘进小断面单线隧道和巷道。
在大断面的隧道和硐室掘进时,可采用预留光面爆破层的分次爆破。采用超前掘进小断面导硐,然后扩大至全断面,这种方法又称为修边爆破。修边爆破的优点是根据最后留下光面爆破层的具体情况调整爆破参数,这样可以节约爆破材料,提高光面爆破效果和质量;其缺点是施工工艺复杂,增加了辅助时间。
为保证光面爆破的良好效果,除根据岩层条件、工程要求正确选择光面爆破参数外,精确的钻孔也极为重要,是保证光面爆破质量的前提。对钻孔的要求是“平”、“直”、“齐”、“准”。
炮孔要按照以下要求施工:
(1)所有周边孔应彼此平行,并且其深度一般不应比其他炮孔深。
(2)各炮孔均应垂直于工作面。实际施工时,周边孔不可能完全与工作面垂直,必然有一个角度,根据炮孔深度一般此角度取3°~5°。
(3)如果工作面不齐,应按实际情况调整炮孔深度及装药量,力求所有炮孔底落在同一个横断面上。
(4)开孔位置要准确,偏差值不大于30mm。对于周边孔开孔位置均应位于掘进断面的轮廓线上,不允许有偏向轮廓线里面的误差。
(7)钻孔压缩波测试步骤扩展阅读
作用机理
炸药爆破是产生的冲击波和高温高压气体均作用在眼壁上,炮眼周围的岩石因受到强烈的压缩破碎,与此同时形成的压缩应力波向四面八方传播。冲击波的传播速度比压缩波快得多,并很快衰减成声波不再起到压缩作用。粉碎圈以外的岩石在压缩波作用下产生径向裂缝,当压缩波传到自由面时,因弹性能的释放又以拉伸波的形式向反方向传播,此时中心部分。
因空间加大和气体压力降低,弹性能于此处山开始释放,生成的拉伸波向离开炮眼中心方向传播。此二拉伸波在其传播过程中把岩块从岩体中抛掷出去,最后形成相互作用的爆破漏斗。当爆破参数选取合理,将形成连续的光滑壁面。
参考资料来源:网络-光面爆破法
参考资料来源:网络-光面爆破
H. 打孔植筋流程
步骤一:钻孔
根据设计图的配筋位置及数量,错开原结构钢筋位置,标注出植筋位置。用冲击钻钻孔,钻头直径应比钢筋直径大5mm左右,钢筋选用φ25钢筋,钻头选用φ30的合金钢钻头。孔深大小15d(375mm),实际钻深400mm。钻孔时,钻头始终与柱面保持垂直。
步骤二:清孔除尘
清空除尘是植筋中最重要的一个环节,因为孔钻完后内部会有很多灰粉、灰渣,直接影响植筋的质量,所以一定要把孔内杂物清理干净。方法是:用防脱毛毛刷,套上加长棒,伸至孔底,把灰尘、碎渣带出,再用压缩空气,吹出孔内浮尘,来回三遍,吹完后再用脱脂棉沾酒精或丙酮擦洗孔内壁。但不能用水擦洗,因酒精和丙酮易挥发,水不易挥发。用水擦洗后孔内不会很快干燥。钻孔清洗完后要请设计等有关单位验收,合格后方可注胶。
步骤三:注胶
植筋胶是AB组分专用成品,取一组强力植筋胶,装进套筒内,安置到专用手动注射器上,慢慢扣动板机,排出铂包口处较稀的胶液废弃不用,然后将螺旋混合嘴伸入孔底,如长度不够可用塑料管加长,然后扣动板机,板机孔动一次注射器后退一下,这样能排出孔内空气。为了使钢筋植入后孔内胶液饱满,又不能使胶液外流,孔内注胶达到80%即可。孔内注满胶后应立即植筋。
步骤四:植筋
在注胶前梁底模板就已支好,便于植筋后钢筋定位。植筋前要把钢筋植入部分用钢丝刷反复刷,清除锈污,再用酒精或丙酮清洗。钻孔内注完胶后,把经除锈处理过的钢筋立即放入孔口,然后慢慢单向旋入,不可中途逆向反转,直至钢筋伸入孔底。
步骤五:固化
钢筋植入后,在梁底模板上定位,在强力植筋胶完全固化前不能振动钢筋。强力植筋胶在常温下就可完成固化,按胶水说明书中指定固化时间待其固化后便可进行下道工序施工。
步骤六:检验
在植筋施工前,要对所用钢筋及植筋胶进行现场拉拔试验,以确定钢筋及植筋胶是否符合设计要求。
方法是:制作与要植筋部位混凝土构件相同强度等级的混凝土试件,按植筋步骤,植入3组钢筋,待植筋胶完全固化后,进行拉拔实验。实验用专用的钢筋测力计,当加力达到Ⅱ级钢筋屈服强度(450N/mm2)时,出现颈缩现象,继而拉断。
测试时测力计施加于卡具的力应符合FC≥FYK(FC:测力计施加的力,N/mm2;FYK:钢筋的屈服强度,N/mm2)试验需证明:植筋用的植筋胶强度大于钢筋的屈服强度,植筋的破坏是钢筋的屈服破坏,不是胶的粘结破坏,这表明钢筋和植筋胶都是合格的。
植筋后进行非破损性拉拔试验,用来检测工作状态下的植筋质量,检测的数量是植筋总数的10%。检测中,测力计施加的力要小于钢筋的屈服强度、大于由设计部门提供的植筋设计锚固力值。公式为:FM<fc<fyk(fc:测力计施加的力,n p="" mm2)检测实验合格后就可进行下道工序。
步骤七:绑筋、支模、浇注混凝土
钢筋在抗拉拔试验合格后就可按施工图开始绑筋、支模、浇注混凝土。
I. 现场波速测试
现场原位波速测试可为工程抗震设计和研究土的动力特性提供具体参数。这对高层建筑日益增多和多地震的我国来讲,具有特别重要的意义。波速测试的传统方法,是先用钻机开孔,后在孔中作波速测试,可分单孔法和跨孔法。波速静探为新的波速测试方法,同时又可做静探测试;本节还介绍地脉动测试。它们都是为工程抗震设计提供必要参数的。
(一)波速静力触探测试
波速静力触探仪(seismic cone penetrometer)由美国人Ertec Western研制,并由加拿大R.G.Campanella等人改进而成。我国南京建工学院已研制成功,由浙江南光地质仪器厂生产。它是在电测静力触探仪的基础上加上一套测量波速的装置(见图7—1),即在静力触探头上方装一检波器,在地面放置一条厚钢(木)板,可用大铁锤敲击钢(木)板,使板与地面产生剪切力,土层振动产生弹性波。大铁锤和检波器分别和地面的示波仪相连,可测得弹性波(主要是压缩波和剪切波)到达检波器的时间,从而测得波速等参数。
1.试验设备
(1)静探压入装置;
(2)激振钢(木)板:板尺寸一般为250cm×30cm×5cm,上压>500kg重物;
(3)探头:单、双桥静探探头及安装其上方的三分量检波器;
(4)大铁锤;
(5)触(激)发器;
(6)孔口(地表)接收或放大记录仪器:主要采用多道地震仪,要有增强叠加功能,如SDZ-01地震仪、Es125地震仪或SC20型—SC16型光线示波仪。
可根据地层情况、试验要求及各单位具体条件,灵活选用压入设备及试验仪器。
2.试验原理
波速静探和钻孔波速法一样,都是利用直达波。做检层法时,以孔口敲板作为振源,利用孔口及孔中检波器测出波传播这段路程的时间,即可求得波速。其计算原理如图7—2示。因激发板离孔口有一段距离(2—4m),地震波行走的路程是斜距(一般按直达波考虑)而不是垂距。因此,采用垂距(地层厚度)计算波速时,应将斜距读时校正为垂距读时,其公式为:
土体原位测试机理、方法及其工程应用
式中:t′——垂距读时;
t——斜距读时(实测);
S——激发板到孔口距;
H——垂直距离。
图7—1单孔波速静力触探测试示意图
设测点D位于层面(图7—2),波通过层面时会产生折射,为简化计算,将波传播的行程ABC折线简化为直线AC(直达波),则C、D层的剪切波速Vs等于
土体原位测试机理、方法及其工程应用
式中,
敲击激振板产生的波也会从探杆中传播到孔内检波器中,从而产生干扰。为了减少这种干扰,可采取一些措施来解决,如水平敲击可使探杆中向下滑行的波能量变得很小;激振板和探杆之间不接触或隔振;在波在探杆上滑行的起始深度(一般在0.5m以内)内加大孔径。
图7—2土层波速计算示意图
水平敲击激振板,板与地面间产生相对剪切滑动,这时在土层中激发出剪切波S和压缩波P,且Vp>Vs。为了能准确辨认出第一个剪切波到达的时间,从而准确计算Vs,就要求振源能产生优势的剪切波(水平敲击);同时,为正确识别剪切波与压缩波,要求振源是可重复的,且能反向(图7—3)。
图7—3P、S波的识别
在波速测试中,分别测定压缩波P和剪切波S初始到达检波器(拾震器)的时间是试验的中心环节。其方法如下:
首先在各测点的原始波形记录上识别出P波和S波序列。第一个起跳点即为P波的初至点。然后根据下列特征识别出第一个S波到达点。
(1)波幅突然增至为P波幅值的2倍以上(图7—3a)。
(2)周期较P波周期至少增加2倍以上(图7—3b)。
若在钢(木)板的两端分别敲击,一般压缩波的初至极性不发生变化,而第一个剪切波到达点的极性则产生180°的改变。因此,极性波的交点即为第一个剪切波的到达点;此交点的横坐标即为剪切波初至时间t。这种示波仪可和计算机相连,把波形讯号贮存到简易磁盘上,可随时取出,将同一深度的两个极性波重叠显示在示波仪荧光屏上,则极性曲线的第一个交点便很容易在荧光屏上识别出来,从而可精确测定时间t(图7—4)。
在波速静探测试中,应变幅较小(10-5—10-7),不及强震时的应变值(10-3—10-4)。因土的模量值随应变增加而呈非线性降低(图7—5),故此法测得的动剪切模量(Gd)是最大值,应用时应注意。
土体原位测试机理、方法及其工程应用
式中:ρ——土层密度(g/cm3);
Gd——土的动剪切模量(kPa);
Vs——S波波速(m/s)。
图7—4示波仪上显示的极化S波讯号图
还可根据Gd计算出土的动弹性模量Ed。
土体原位测试机理、方法及其工程应用
式中,μd为土的动泊松比;其它符号意义同前。
土体原位测试机理、方法及其工程应用
二式中:Vp——地层的压缩波速度(m/s);
Vs——地层的剪切波速度(m/s);
ρ——地层的密度(t/m3);
Gd、Ed——分别为地层的动剪、动弹性模量(kPa)。
图7—5动剪切模量Gd和剪应变γ的关系
综上所述,可将配有触探车和计算机的波速静力触探试验步骤归纳如下。
(1)把条形厚钢(木)板置于离孔位2.5m左右远的地面上,清除钢板下方的石子等物,并将触探车压在钢板上(可将钢(木)板用液压装置安放在车底座后下方,以便自由升降和固定),以使钢(木)板紧贴地面。
(2)将联接波速静力触探头的电缆和大铁锤的导线与示波仪相连;注意触探杆和车身不得接触,以免波通过触探杆先期到达检波器。
(3)将触探头压入,同时测记锥头阻力、侧壁摩阻力和孔隙水压力。
(4)到预定深度后停止压入,调整示波仪旋纽到测试状态。
(5)用大锤敲击钢(木)板一端激振,并将波形讯号贮存在与示波仪相连的计算机简易磁盘上;然后,用大锤敲击钢(木)板另一端,同样把波形讯号贮存在磁盘上。
(6)为取得最佳效果或求得平均时间值,可放大讯号或重复步骤(4)和(5)。
(7)如继续进行试验,可重复步骤(3)—(6)。
波速静力触探试验的优点有:
(1)同时做静力触探试验和波速试验,互不干扰,效率高,应用面广。
(2)做波速试验时,比通常的跨孔波速试验可节省一个探孔,大大节省测试时间和费用。
(3)检波器紧贴孔壁,位置固定,测试精度高。
实践证明,波速静力触探法的有效测试深度已达40m,最浅不得小于0.5m,最佳测试深度范围为3—30m。其测试成果见图7—6。
图7—6波速静探成果曲线(据袁灿勤等,1990)
波速静力触探所测剪切波速资料是非常有用的,是地基抗震设计不可缺少的。在土的物性中,对地震反应起决定作用的是剪切波速。地面运动的卓越周期和加速度(速度、位移)幅值均与覆盖土层的剪切波速有关,如(7—6)式。
土体原位测试机理、方法及其工程应用
式中:T0——地震波的卓越周期(s);卓越周期指地震波组成中出现次数最多的周期。
H——上覆土层的厚度(m);其余符号意义同前。
用
土体原位测试机理、方法及其工程应用
式中:Hi——第i层厚度;
Vsi——第i层S波速;
一般应计算到Vs>500m/s的地层。T0单位为秒。
(二)波速测试综述
1.直达波测试
在进行工程勘察时,浅层地震勘探具有明显的优点,其精度和分辨率较高。波速测试就是浅层地震勘探的一种。由震源出发,直接到达各接收点的波称直达波。它反映了浅层介质的弹性特点,广泛用于了解地基岩土的弹性模量、泊松比等动力参数;也可根据动静参数对比,进一步求出静力参数。
与纵波相比,横波的特点是波速低。在用敲击大板作为振源的条件下,横波还具有振幅大、衰减慢、频率低的特点;如果进行正、反向敲击时,直达横波还具有反相位特点(图7—4)。但是,对于反射横波来说,因受反射面条件的影响,正、反向敲击的相位关系则比较复杂,并不总是反相位。对横波勘探资料解释,首先要对横波的时间剖面进行解释,并计算出各层波速,然后利用波速计算出弹性参数。
依不同的现场条件和设备条件,以及欲测动力参数,可选择不同的方法进行直达波(波速)测试。在同一个试验深度上,应重复试验,以保证测试质量。
(1)单孔法:利用单一钻孔,孔内激发地面接收或地面激发孔内接受直达波,测得地表至测点间地层的平均波速。
单孔法多用地面激发,激发装置应尽量靠近孔口,以减少测量误差。由于波会随深度衰减,因而单孔法的测试深度有限,一般不超过80m。波速静力触探测试中的波速测试,就属于单孔法。它自行钻孔,检波器紧贴孔壁,测试精度高,费用低,速度快,适宜用在层次少或土层软硬变化大的场地。
单孔法也常先用钻探一次成孔,然后下入塑料套管;在套管壁与孔壁之间的孔隙中填入砂子,并加以密实;然后将电缆、检波器及空气囊一起放入套管;达到预定测试深度后,立即对气囊充气,以便将检波器固定贴紧在套管壁上。然后在地表用大锤敲击压有重物的厚木板,用地震仪(或动测仪)接受,和波速静力触探测试波速方法类似。从孔底向上,按预定测试深度依次作完。如果在不会塌孔的硬粘性土等地层中测试,也可不下套管,用泥浆护壁进行测试,测试精度比下套管要好。由于单孔法多在地面激振,波会随深度增加而衰减,使接受讯号变弱。因此,单孔法测试深度有限,浅层效果好,最深不超过80m。测试深度与激振能量有关。
(2)跨孔法:在相距4—5m的两个平行钻孔的相同深度上,在一孔中激发,在一孔中接收直达波。从波形图上读到从激发讯号至横波初至信号之间的时间差,除以两钻孔的中心距,即可求得该地层的横波波速。宜布置两个检波孔,以便校核平均。
跨孔法测试深度较大,且须试前钻2—3孔,测试成本较单孔法高。在求分层波速上,精度高于单孔法。
2.地脉动测量
随着我国高层建筑物的日益增多和抗震法规的执行,一般都要求进行地脉动测量,以提供建筑物抗震设计参数。
在非人为因素的自然条件下,地表每时每刻都以微小的振幅不停地振动着,振幅一般仅有数微米,振动周期一般为0.05s至数秒。地脉测量选择没有干扰的时候(一般为深夜或凌晨)进行,连续观测5min以上,用放大1000倍以上的专用地震仪观测。原始记录及其处理后的曲线见图7—7。在此图的微震记录中,以零线作为时间轴,可得波形与零线交点,取相邻两交点时差△t的两倍,就是波的周期T。一般取2min的连续记录进行统计,数出各种周期出现的次数(即频度),于是可得图7—7c的周期频度曲线,曲线上频度最高的周期,即为卓越周期,以To表示。图7—7b是地基微动频谱曲线,振幅最高的为卓越振幅。地基土的卓越周期是反映地基土抗震条件的最主要参数,须避免建筑物自振周期和场地卓越周期相同。
图7—7确定卓越周期图
(三)波速资料的应用
1.划分建筑场地抗震类别
我国工业与民用建筑抗震设计规范(TJ11-78修订本及GBJ11-89)中将场地按覆盖层厚度H和平均剪切波速
表7—1建筑场地的抗震分类
注:fk为地基承载力标准值。
按表7—1的场地条件分类,既抓住了影响地面运动特性的两个主要因素,又考虑了过去的经验,比较简便合理。
表7—1中的场地土类别分两种情况,当为单一土层时,土的类别即为场地区类别;当为多层土时,场地土类别,应根据地面下15m,且不深于覆盖层厚度范围内各土层的类别和厚度综合判定。按厚度加权平均的方法求土层平均剪切波速
土体原位测试机理、方法及其工程应用
场地覆盖层厚度应按地面至VS>500m/s的土层或坚硬顶面的距离确定。该顶面以下各土层VS均大于500m/s或皆为坚硬土,薄的夹层或孤石应包括在覆盖层之内。
建筑场地抗震分类是利用设计反应谱(见抗震规范)计算地震荷载的必要条件。
2.求土的工程性质指标
许多单位和个人把弹性波速同土的工程性质指标建立起相关经验式。现摘录一些Vs与其它指标之间的关系式。如日本Tovouchik经验式为:
土体原位测试机理、方法及其工程应用
上四式中:K0——基床系数(100kPa);
qu——无侧限抗压强度(100kPa);
P1——屈服压力(100kPa);
土体原位测试机理、方法及其工程应用
式中:N——标贯击数;
Vs——剪切波速(m/s)。
国内有的单位还将Vs与e、C、IL、Φ、γ等建立了关系式。应用上述经验式时,须结合当地土质情况进行验证。
3.判别砂土或粉土的地震液化
剪切波速越大,土越密实,土层越不易液化。据此,国内、外都在应用Vs来评价砂土或粉土的地震液化问题。
(1)天津TBT1-88规范:
土体原位测试机理、方法及其工程应用
式中:Vscri——临界波速(m/s);
Kv——地震系数,烈度为7度时,取42;8度时,取60;
ds——饱和砂土或粉土所处深度(m)。
如实测的Vsi>Vscri不液化
Vsi<Vscri液化。
(2)国家地震局工程力学所判别式:
土体原位测试机理、方法及其工程应用
式中:Kv——地震系数,烈度为7、8、9时,分别取145、160、175;
dw——地下水埋深(m);
其它符号意义同前。
当Vsi>Vscri时,土层不会液化;反之,会液化。
(3)美国西特公式:
土体原位测试机理、方法及其工程应用
式中:Z——饱和粉土或砂土埋深(m);
γd——土的非刚性修正系数,地表为1,12m深处为0.85;
其它符号意义及判别方法同前。
(4)根据国内、外研究,对于大多数粉土和砂土,产生液化的临界应变量γcr=2×10-4,可进行室内测试。现场波速试验的剪应变量很小,一般为10-6级。
4.根据(7—14)—(7—18)式可计算土层的动剪切模量Gd、动弹性模量Ed和动泊松比μd。
土体原位测试机理、方法及其工程应用
式中,Vs、Vp、VR分别为剪切波速、压缩波速和瑞利波速;
其它符号意义同前。
动泊松比可通过Vp或Vs值换算,也可按经验值取用。
J. 石油钻探
【石油钻探揭秘】
原文地址http://science.bowenwang.com.cn/oil-drilling.htm
图文并茂推荐在原链接观看。
石油的形成
石油是由1,000万至6亿年前古代海洋里死亡的微小动植物(浮游生物)残体形成的。这些生物死后,便会沉入海底的沙里或泥里。
随着岁月流逝,生物有机体在沉积层内腐烂了。这些地层内的氧气很少或根本就没有氧气,因此残体被微生物分解为富碳化合物,最终形成有机层。这些有机物质与沉积物混和,形成了细密的页岩或源岩。随着新的沉积层不断沉积,源岩被施加了巨大的压力和热量,这些热量和压力使得有机物质成为了原油和天然气。石油从源岩内流出,积聚在厚度更高、孔隙更多的石灰岩或沙岩(称为贮油岩)中。地壳运动使得石油和天然气被截留在不渗透岩层或盖岩(例如花岗石或大理石)之间的贮油岩内。
这些地壳运动包括:
褶皱——向内挤压的水平运动,使得岩层向上移动形成褶皱或背斜。
断层——岩层断裂,并发生上下相对位移。
尖灭——不渗透岩层被向上压入贮油岩中。
寻找石油
寻找石油是地质学家的任务,地质学家或被石油公司直接雇佣,或被私人公司通过合同雇佣。他们的任务是找到正确的石油开采区——正确的源岩、贮油岩和圈闭。多年以前,地质学家的主要工作是解释地貌、地表岩石和土壤类型,或许还会通过浅层钻井采集一些少量的岩芯样品。现代的石油地质学家还借助卫星图像来研究地表岩石和地形。然而,他们还利用各种其他的方法来寻找石油。比如,可以利用高灵敏度的重力仪来测量地球引力场中的微小变化,这些变化可以寻找到地下流动的石油;还可以利用高灵敏度的磁力计来测量由于石油流动造成的地球磁场内的细微变化;利用被称为嗅探器的高灵敏度电子鼻,他们可以探测到烃类物质的气味。最后(也是最常见的),他们利用地震学的知识,制造出冲击波穿过隐藏岩层,然后对反射回地面的地震波进行分析。
在地震勘测中,制造冲击波的方法包括:
压缩气枪——向水中发射空气脉冲(用于水面勘探)
重击卡车——向地下击入厚金属板(用于陆地勘探)
炸药——在地上钻孔放入炸药(用于陆地勘探)或从船上向外扔炸药(用于水面勘探),然后引爆。
冲击波在地下传播,并被不同的岩层反射回来。反射波的传播速度取决于它们所穿过岩层的类型或密度。人们利用高灵敏度的扩音器或振动探测器来探测冲击波的反射波——水上勘探利用水听器,陆上勘探利用地震检波器。地震学家将对探测结果进行分析,来寻找油汽圈闭区的信号。
虽然现代石油勘探技术要比过去先进很多,但是在寻找新油田时仍然只有10%的成功率。一旦发现一个富油区,其位置在陆地上将用全球定位系统坐标进行标记,水中则用标志浮标进行定位。
确定好地点之后,必须对选定地区进行勘测以确定其边界,此外可能还需要进行环境影响研究。石油钻探必须获取租赁协议、土地使用资格和权利,还要进行法律评估。对于近海地区,还需要确定法律管辖权。
法律问题解决之后,工作队开始着手陆地准备工作:
将陆地打扫干净并铺平,修建交通道路。
因为钻探过程需要水,所以附近必须有水源。如果不存在天然水源,工作队会打一口水井。
工作队会挖掘一个储备池,用来处理钻探过程中产生的岩屑和钻探泥浆。储备池底部会铺设塑料衬层,以保护环境。如果该地区是一个生态易受破坏地区(如湿地或荒野),那么岩屑和泥浆必须在其他地方进行处理——用卡车运走,而不是填入坑内。
陆地准备工作完成之后,还需要挖掘几个钻探孔,为搭建钻塔和钻探主孔做准备。在真正的钻井孔周围挖一个被称为圆井的矩形深坑,圆井在钻孔周围为工作人员和钻井设备提供了一个工作平台。之后,工作人员开始挖掘主孔,通常是利用一个小型钻车,而不是大型钻塔。钻孔的第一部分要比主体部分大一些,也更浅一些,并会铺设大直径的导管。在一旁挖掘一些额外的钻探孔,用来暂时储存设备——这些钻探孔完成之后,就可以运入并架起钻探设备了。
搭建钻塔
根据钻探区与其交通道路之间的距离远近,来决定是利用卡车、直升机还是驳船将设备运到现场。一些在内陆水域工作的钻塔被建在海船或驳船上,因为那里没有可以支撑钻塔的地基(例如湿地或湖泊)。设备到位之后,便开始搭建钻塔。下面是陆地石油钻塔的主要组成系统:
动力系统
大型柴油发动机——燃烧柴油以提供主要的动力来源
发电机——以柴油发动机为动力来提供电力
机械系统——由电机驱动
提升系统—— 用来提升重物;由一个带有大型钢缆轴盘的机械绞盘(绞车)、一个滑轮组和一个电缆接收存储滚筒组成
转盘——钻探设备的一个组成部分
旋转设备——用于旋转钻探
转环——一个大手柄,用来支撑钻柱的重量,使钻柱可以旋转,并对孔口进行耐压密封
转管——四面或六面的导管,将旋转运动传输到转盘或转柱上
转盘或轮盘——利用电机提供的动力来推动旋转运动
钻柱——由钻杆(连接部分,大约10米长)和钻环(直径更大、更重的导管,安装在钻杆周围,由钻头承载其重力)组成
钻头——钻孔机的末端,用来实际切割岩石;会针对不同的钻探任务和岩石构成,在众多形状和材质(碳化钨钢或金刚石)的钻头中选用最适合的一种
套管——安放在钻孔内的大直径混凝土管道,用于防止钻孔塌陷并允许钻探泥浆进行循环
石油学会供图
泥浆在钻孔内循环
循环系统——在压力作用下用泵抽取钻探泥浆(水、粘土、加重材料和化学物质的混合物,用来把钻头上的岩屑带到地表),使之通过转管、轮盘、钻杆和钻环
泵——从泥浆坑中抽取泥浆,并把它抽吸到钻探设备中
导管和软管——连接泵和钻探设备
泥浆回流管道——使泥浆从钻孔中回流
泥浆振动筛——通过振动或者过滤将岩屑从泥浆中分离出来
滑道——将岩屑传送到储备池
储备池——收集从泥浆中分离出来的岩屑
泥浆坑——钻探泥浆进行混合和循环利用的场所
泥浆混合槽——新的泥浆在这里进行混合,随后送入泥浆坑
铁架塔——安放钻探设备的支撑框架;铁架塔必须足够高,以保证在钻探过程中可以向钻探设备上添加新的钻杆部件
防喷装置——高压阀(安装在陆地钻塔下或海床上)用来密封高压钻井管道,并在必要时降低压力以防止发生井喷(即气体或石油不受控制地喷出地表,经常会引起火灾)
工作队搭建起钻塔开始钻探工作。首先,他们在最初的钻孔位置上钻一个表孔,该孔的深度是预定的,要高于人们所认为的石油圈闭区的位置。钻探表孔有五个基本步骤:
把钻头、钻环和钻杆放入孔内。
安装转管和转盘,开始钻孔。
钻孔过程中,循环泥浆不断通过钻杆,并从钻头排出,使得岩屑可以浮出孔口。
随着孔越钻越深,要在钻杆上增加新部件(接头)。
到达预定深度(从几十米到几百米)后,移走(取出)钻杆、钻环和钻头。
到达预定深度之后,必须插入套管并进行固定 ——将套管部分置入钻孔内,以防止钻孔发生塌陷。套管外围设有定位装置,以保证它位于钻孔中央。
负责套管的工作人员将套管放入钻孔中。固井队工作人员利用底塞、水泥浆、顶塞和钻探泥浆通过套管向下灌注水泥。来自钻探泥浆的压力使得水泥浆流经套管,并充满套管外部与钻孔之间的空隙。最后,等待水泥凝固,然后对硬度、位置和完全密封等性能进行测试。
新的钻探技术
美国能源部和石油业都在努力寻找石油钻探的新方法,其中包括水平钻探技术、在生态易受破坏地区进行石油开采以及利用激光技术钻油井。
继续钻探阶段:工作人员进行钻探,然后放置新套管并用水泥进行加固,之后再进行钻探。当泥浆所含的岩屑中出现贮油岩内的油沙时,就达到了最终深度。此时,工作人员将钻探设备从钻孔中移出,然后进行以下几项测试以验证这一发现:
测井——在钻孔内放置电子和气体传感器来测定那里岩石的组成
钻杆测试——在钻孔内放置测压装置,该装置可以显示是否已经到达贮油岩
岩芯取样——采集岩石样品,寻找贮油岩的特征
井喷和火灾
在电影里,会看到钻孔机到达最终深度时发生的油喷(井喷),甚至是火灾。这些都是非常危险的情况,利用防喷装置和钻探泥浆产生的压力(有可能)可以避免这些状况的发生。在大多数油井中,都必须对油井进行酸化或碎裂处理,才能使油流出。
达到最终深度后,工作人员会将油井加以完善以保证石油能够以可控制的方式流入套管中。首先,将打孔器放入油井内的产油深度处。打孔器内装填有炸药,可以在套管上炸开洞孔,从而让石油经此处流出。套管开孔后,向钻孔内放入一根小直径的导管(油管),作为油气流出井外的管道。一种叫做封隔器的装置被安装在油管外部的底端,当封隔器设置为生产状态时,它会发生膨胀,从而在油管外部形成一个密封圈。最后,在油管顶部连接一个被称为采油树的多阀结构,并将其与套管顶部结合在一起。采油树使得工作人员可以控制井内流出石油的流速。
油井完成后,必须让石油流入油井内。如果是石灰石贮油岩,那么通过向油井内注入酸,可以使之通过孔洞流出。酸会使石灰石内溶解出一条可供石油流入油井的通道。如果是沙岩贮油岩,那么可以向油井中注入一种含有支撑剂(沙子、胡桃壳、铝粒)的特殊混合液体,然后使石油通过孔洞流出。来自此种液体的压力使得沙岩内部产生微小的裂缝,因此石油可以流入井内,而支撑剂可以维持这些缝隙的存在。石油流出时,石油钻塔就会从现场拆除,同时安装生产装置来从油井中抽取石油。
钻塔被移走后,将在井口放置一台油泵。
加利福尼亚州资源保护部供图
用泵在钻井中抽油
在泵抽系统中,利用电机带动齿轮箱来移动控制杆。控制杆不断地推拉抛光杆,使之上下移动。抛光杆连在一个抽油杆上,抽油杆又连着泵。该系统推动泵上下移动,从而产生一个吸力将石油从井里抽上来。
在有些情况下,石油可能会因过于粘稠而无法流动。这时工人们会再钻一个孔到达贮油区内,然后在压力作用下注入蒸汽。蒸汽散发的热量会使贮油区内的石油变稀,进而利用压力作用将石油压出井外。该过程被称为原油强化回收。
加利福尼亚州资源保护部供图
石油强化回收
虽然目前正在应用的石油钻探技术众多,并且新的方法不断出现,但是问题仍然存在:我们会有足够的石油来满足需求么?根据目前和未来的石油发现量以及当今的需求量来估计,我们的石油储量只能满足未来63到95年的消耗量。
钻探
工作队搭建起钻塔开始钻探工作。首先,他们在最初的钻孔位置上钻一个表孔,该孔的深度是预定的,要高于人们所认为的石油圈闭区的位置。钻探表孔有五个基本步骤:
把钻头、钻环和钻杆放入孔内。
安装转管和转盘,开始钻孔。
钻孔过程中,循环泥浆不断通过钻杆,并从钻头排出,使得岩屑可以浮出孔口。
随着孔越钻越深,要在钻杆上增加新部件(接头)。
到达预定深度(从几十米到几百米)后,移走(取出)钻杆、钻环和钻头。
到达预定深度之后,必须插入套管并进行固定 ——将套管部分置入钻孔内,以防止钻孔发生塌陷。套管外围设有定位装置,以保证它位于钻孔中央。
负责套管的工作人员将套管放入钻孔中。固井队工作人员利用底塞、水泥浆、顶塞和钻探泥浆通过套管向下灌注水泥。来自钻探泥浆的压力使得水泥浆流经套管,并充满套管外部与钻孔之间的空隙。最后,等待水泥凝固,然后对硬度、位置和完全密封等性能进行测试。
新的钻探技术
美国能源部和石油业都在努力寻找石油钻探的新方法,其中包括水平钻探技术、在生态易受破坏地区进行石油开采以及利用激光技术钻油井。
继续钻探阶段:工作人员进行钻探,然后放置新套管并用水泥进行加固,之后再进行钻探。当泥浆所含的岩屑中出现贮油岩内的油沙时,就达到了最终深度。此时,工作人员将钻探设备从钻孔中移出,然后进行以下几项测试以验证这一发现:
测井——在钻孔内放置电子和气体传感器来测定那里岩石的组成
钻杆测试——在钻孔内放置测压装置,该装置可以显示是否已经到达贮油岩
岩芯取样——采集岩石样品,寻找贮油岩的特征
井喷和火灾
在电影里,会看到钻孔机到达最终深度时发生的油喷(井喷),甚至是火灾。这些都是非常危险的情况,利用防喷装置和钻探泥浆产生的压力(有可能)可以避免这些状况的发生。在大多数油井中,都必须对油井进行酸化或碎裂处理,才能使油流出。
达到最终深度后,工作人员会将油井加以完善以保证石油能够以可控制的方式流入套管中。首先,将打孔器放入油井内的产油深度处。打孔器内装填有炸药,可以在套管上炸开洞孔,从而让石油经此处流出。套管开孔后,向钻孔内放入一根小直径的导管(油管),作为油气流出井外的管道。一种叫做封隔器的装置被安装在油管外部的底端,当封隔器设置为生产状态时,它会发生膨胀,从而在油管外部形成一个密封圈。最后,在油管顶部连接一个被称为采油树的多阀结构,并将其与套管顶部结合在一起。采油树使得工作人员可以控制井内流出石油的流速。
油井完成后,必须让石油流入油井内。如果是石灰石贮油岩,那么通过向油井内注入酸,可以使之通过孔洞流出。酸会使石灰石内溶解出一条可供石油流入油井的通道。如果是沙岩贮油岩,那么可以向油井中注入一种含有支撑剂(沙子、胡桃壳、铝粒)的特殊混合液体,然后使石油通过孔洞流出。来自此种液体的压力使得沙岩内部产生微小的裂缝,因此石油可以流入井内,而支撑剂可以维持这些缝隙的存在。石油流出时,石油钻塔就会从现场拆除,同时安装生产装置来从油井中抽取石油。
-====================================================================
【石油工业论坛】专业的知识交流,不懂可以来这提问。
http://bbs.cqvip.com/notelist.asp?k=0,560