Ⅱ 如何学习凸优化课程
[book-optimization.rar]-这是一本讲解最优化的书籍,是全英文的。这是一部经典的外国教材,对最优化问题阐述的非常之精辟[Optimal.rar]-几个凸优化函数,用于解决非约束和带约束条件的凸优化问题[stanford_convex_optimization_book.rar]-国外的经典的有关于凸优化数学方面的教材,值得研究有关优化方面的研究者学习[convex_analysis_foundation.zip]-凸分析基础中文教材。纯粹这方面的资料不多(多为凸优化之类),中文的书籍更难找,有用该方面知识的同行多多交流。[ConvexOptimization.rar]-凸优化问题经常出现在许多不同的领域。全面介绍了主题,这本书展示了如何解决这些问题都可以高效率地详细数字。其重点是识别凸优化问题,然后找到解决他们最合适的技术。文本包含许多实例和作业练习,并会提出问题,如工程,计算机科学,数学,统计,金融,经济领域的学生,研究者和实践者。[cvx.zip]-斯坦福大学凸规划的程序,很经典,多次在IEEE的文章中出现[convex_optimization.rar]-凸优化程序包,包含各种凸优化算法,可供方便调用.[signal_decomposition_by_bp.rar]-基于基追踪(basispursuit)对信号进行稀疏表示的算法[cvx.zip]-凸规划建模系统,包含用户手册,有助于学习压缩感知。[grads.rar]-最优化理论与算法(第2版)这本书中的课后作业。用C实现的一些具体算法。
Ⅲ 什么是Dantzig selector
Dantzig selector是和OMP,BP等重构算法类似的,用于重构稀疏信号。你是在做压缩感知方面的么?
Ⅳ 稀疏度为1的信号,用压缩感知恢复原始信号,匹配追踪算法(MP)和正交匹配追踪算法(OMP)的结果一样吗
压缩感知(Compressed Sensing, CS)[1]理论具有全新的信号获取和处理方式,该理论解决了传统的Nyquist方法采样频率较高的问题,大大降低了稀疏信号精确重构所需的采样频率。
另外,CS理论在数据采集的同时完成数据压缩,从而节约了软、硬件资源及处理时间。
这些突出优点使其在信号处理领域有着广阔的应用前景!
Ⅳ 为什么凸优化这么重要
[ book-optimization.rar ] - 这是一本讲解最优化的书籍,是全英文的。这是一部经典的外国教材,对最优化问题阐述的非常之精辟 [ Optimal.rar ] - 几个 凸优化 函数,用于解决非约束和带约束条件的凸优化问题 [ stanford_convex_optimization_book.rar ] - 国外的经典的有关于 凸优化 数学方面的教材,值得研究有关优化方面的研究者学习 [ convex_analysis_foundation.zip ] - 凸分析基础 中文教材。纯粹这方面的资料不多(多为 凸优化 之类),中文的书籍更难找,有用该方面知识的同行多多交流。 [ ConvexOptimization.rar ] - 凸优化 问题经常出现在许多不同的领域。全面介绍了主题,这本书展示了如何解决这些问题都可以高效率地详细数字。其重点是识别凸优化问题,然后找到解决他们最合适的技术。文本包含许多实例和作业练习,并会提出问题,如工程,计算机科学,数学,统计,金融,经济领域的学生,研究者和实践者。 [ cvx .zip ] - 斯坦福大学凸规划的程序,很经典,多次在IEEE的文章中出现 [ convex_optimization.rar ] - 凸优化 程序包,包含各种凸优化算法,可供方便调用. [ signal_decomposition_by_bp.rar ] - 基于基追踪(basis pursuit)对信号进行稀疏表示的算法 [ cvx .zip ] - 凸规划建模系统,包含用户手册,有助于学习压缩感知。 [ grads.rar ] - 最优化理论与算法(第2版)这本书中的课后作业。用C 实现的一些具体算法。
Ⅵ 有人在学压缩感知吗谁知道怎么用0范数或者L1范数最小化重构原始信号或者给我文献也行
用0范数或1范数解决cs重构归属一个数学问题,犹如给定你一个公式,利用这个公式或者说原理去做出很多的算法,cs重构本归属与对0范数的求解问题上的。
但0范数属于数学上一个NP_hard问题,是无法解决的,所以不能直接用求0范数的理论去做算法,从而提出一系列基于求0范数最小的贪婪类算法。如MP,OMP等算法。,这类算法中,最为基础的算是MP算法了。贪婪算法的速度较快,但是重构效果相对较差,需要的测量数也较多,不能高效地压缩信号,并且对测量矩阵的要求更高。但总的来说,应用范围广。
数学家同时发现,求解L1范数也可以逼近与0范数的效果,即把NP_hard问题转化为线性规划问题。所以现在有很多用求L1范数原理而创造了各类算法,最典型的是BP(基追踪)算法和梯度投影稀疏重构算法。这种算法重构效果很好,但是运算量大,复杂,应用于实际上可能不大。至少得改进其算法。
还有一大类算法,我不关注,不说了。
具体那些算法怎么实现,自己去网上下程序仿真一下吧。。。。