① 什么是淤泥质土
淤泥质土是有机土的一种,属于软弱土。
根据土中有机质含量的多少,可将土划分为无机土、有机土、泥炭,泥炭质土。有机土包括淤泥、淤泥质土,其有机质含量为:5%<Wu≤10%;泥炭质土有机质含量为:10%Wu≦60%。
软弱土是抗剪强度较低、压缩性较高、渗透性较小、天然含水较大的饱和粘性土,其中淤泥和淤泥质土就是软弱土的主要类型。淤泥质土指天然含水率大于液限、天然孔隙比在1.0~1.5之间的粘性土。
这种土主要分布在我国东南沿海地区和内陆的大江、大河、大湖沿岸及周边。由于压缩性较高、强度低、因此地基沉降大,且多为不均匀沉降,极易造成建筑物墙体开裂、建筑物倾覆。在工程建筑中,必须引起足够的重视。
淤泥质土的工程特性:
1、地基的沉降由固结沉降、侧向挤出和次固结沉降三部分组成。当荷载小于比例界限值(即从荷载试验曲线得到的直线段)时,沉降主要由固结所引起。在相同条件下淤泥及淤泥质土地基沉降量比一般第四纪粘性土天然地基大若干倍。
因此,上部荷重的差异、复杂建筑体型、建筑物的毗邻及大面积地面负荷等都可以引起严重的差异沉降或倾斜,造成房屋损坏,上下水管道开裂及雨水倒灌等不良后果。
2、沉降速率较大且沉降稳定历时较长,沉降速度与施工的快慢和活载堆积的速率有关。缓慢的加荷,如一般民用房屋或工业建筑的活载较小者,竣工时速度大约为0.5~1.5毫米/日,施工期间沉降量约为总量的20%。
主固结沉降稳定历时约需数年。加荷速率过快,且荷载较大时,建筑物容易发生倾斜甚至倒塌事故。主要沉降完成后还有相当长时间的次固结沉降。次固结沉降速率较小,但延续时间可达几十年。
3、淤泥固结后的抗剪强度和压缩模量比固结前有很大的提高,预压加固地基的方法就是根据这个原理提出的。
4、在地震周期荷载作用下淤泥地基将出现附加下沉,下沉量与周期荷载的大小、循环次数及地基中的静剪应力状态有关。在中国唐山地震期间,渤海沿岸淤泥地区房屋出现了程度不同的下沉;
在烈度超过八度地区,下沉量有的超过30厘米,并引起房屋不同程度的倾斜;七度地区下沉现象较轻,一般只有静载引起的沉降的十分之一。
② 各种类型的土的压缩模量怎么查询比如淤泥,粘土,沙砾石Es多少
直接在网络输入淤泥或粘土,或者是淤泥压缩模量,粘土压缩模量,这个得到的信息量很多,需要你自己在进行筛选,筛选出你需要的。
③ 各种类型的土的压缩模量怎么查询比如淤泥,粘土,沙砾石Es多少
淤泥(Q4)一般小于3,粘土(Q4)3-5之间,砂砾石视经验了,告诉你个经验法Es=(1+e)a1-2
④ 急求淤泥的弹性模量与泊松比的大致范围是多少
淤泥的弹性模量取800左右,泊松比0.3。
1、材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。
2、材料沿载荷方向产生伸长(或缩短)变形的同时,在垂直于载荷的方向会产生缩短(或伸长)变形。垂直方向上的应变εl与载荷方向上的应变ε之比的负值称为材料的泊松比。以v表示泊松比,则v=-εl/ε。在材料弹性变形阶段内,v是一个常数。
⑤ 淤泥土特性
淤泥和淤泥质土地基是指由淤泥及淤泥质土组成的高压缩性软弱地基。淤泥及淤泥质土是在静水或非常缓慢的流水环境中沉积,并伴有微生物作用的一种结构性土。就其成因看有滨海沉积、湖泊沉积、河滩沉积及沼泽沉积四种。地基的沉降由固结沉降、侧向挤出和次固结沉降三部分组成。当荷载小于比例界限值(即从荷载试验曲线得到的直线段)时,沉降主要由固结所引起。在相同条件下淤泥及淤泥质土地基沉降量比一般第四纪粘性土天然地基大若干倍。(5)淤泥压缩模量扩展阅读:
1、沉降速率较大且沉降稳定历时较长,沉降速度与施工的快慢和活载堆积的速率有关。缓慢的加荷,如一般民用房屋或工业建筑的活载较小者,竣工时速度大约为0.5~1.5毫米/日,施工期间沉降量约为总量的20%。
2、淤泥固结后的抗剪强度和压缩模量比固结前有很大的提高,预压加固地基的方法就是根据这个原理提出的。
3、在地震周期荷载作用下淤泥地基将出现附加下沉,下沉量与周期荷载的大小、循环次数及地基中的静剪应力状态有关。
⑥ 什么是淤泥和淤泥质
淤泥和淤泥质土地基是指由淤泥及淤泥质土组成的高压缩性软弱地基。淤泥及淤泥质土是在静水或非常缓慢的流水环境中沉积,并伴有微生物作用的一种结构性土。
就其成因看有滨海沉积、湖泊沉积、河滩沉积及沼泽沉积四种。
地基的沉降由固结沉降、侧向挤出和次固结沉降三部分组成。当荷载小于比例界限值(即从荷载试验曲线得到的直线段)时,沉降主要由固结所引起。在相同条件下淤泥及淤泥质土地基沉降量比一般第四纪粘性土天然地基大若干倍。
(6)淤泥压缩模量扩展阅读:
1、沉降速率较大且沉降稳定历时较长,沉降速度与施工的快慢和活载堆积的速率有关。缓慢的加荷,如一般民用房屋或工业建筑的活载较小者,竣工时速度大约为0.5~1.5毫米/日,施工期间沉降量约为总量的20%。
2、淤泥固结后的抗剪强度和压缩模量比固结前有很大的提高,预压加固地基的方法就是根据这个原理提出的。
3、在地震周期荷载作用下淤泥地基将出现附加下沉,下沉量与周期荷载的大小、循环次数及地基中的静剪应力状态有关。
⑦ 淤泥软土土工参数之间的相关性分析
在岩土工程中,土体的各项物理力学参数并不是独立存在的,它们相互之间具有一定的关联性。研究各项物理力学指标之间的相关性,建立相互之间的经验回归方程,具有重要的工程实用价值。表3.6 给出了温州浅滩淤泥各项物理力学指标之间的相关系数R的值。
表3.6 温州浅滩淤泥各项物理力学指标之间的相关系数汇总表
续表
由上表可知,有些指标之间具有很好的相关性,相关系数R接近于1;而有些指标之间的相关性却很小。温州浅滩淤泥的物理力学性质指标中较显着的相关规律有:
3.4.4.1 天然含水率w与湿密度ρ之间的关系
温州浅滩淤泥的天然含水率w与湿密度ρ的散点图及回归拟合曲线如图3.5所示。两者之间存在较好的线性递减关系,拟合曲线方程为w=-114.48ρ+246.16,相关系数R=-0.829。
图3.5 温州浅滩淤泥w ρ理论及回归关系曲线
据土力学中指标间的换算公式,可推导出用湿密度ρ来表示天然含水率w的关系式为
温州浅滩软土工程特性及固结沉降规律研究
根据表3.2 中岩土参数的标准值,若取温州浅滩淤泥的土粒相对密度Gs=2.76,饱和度Sr=97%,则有w=(0.97ρ-2.6772)/(2.6772-2.76ρ)。那么,据此可以绘制w-ρ关系的理论计算曲线(图3.5)。可见,理论计算曲线与线性拟合曲线吻合较好。
3.4.4.2 天然含水率w与孔隙比e之间的关系
温州浅滩淤泥的孔隙比e与天然含水率w的散点图及回归拟合曲线如图3.6所示。两者之间的拟合曲线方程为e=0.027 w+0.086,相关系数R=0.973。
图3.6 温州浅滩淤泥e-w回归关系曲线
根据土力学中指标之间的换算公式,孔隙比e与天然含水率w之间的关系可以表示为
温州浅滩软土工程特性及固结沉降规律研究
将式(3.30)和图3.6 中的回归方程对比,Gs/Sr即为回归曲线的斜率,将淤泥看做饱和土(Sr=1),则回归曲线的斜率即为土粒相对密度Gs,即有Gs=2.7,该值小于表3.2 中土粒相对密度的标准值2.76,它反映了温州浅滩淤泥的孔隙比e与天然含水率w之间的实际关系。
3.4.4.3 孔隙比e与湿密度ρ之间的关系
温州浅滩淤泥的孔隙比e与湿密度ρ的散点图及回归拟合曲线如图3.7所示。两者之间存在较好的线性递减关系,拟合曲线方程为e =-3.59ρ+7.55,相关系数 R=-0.93 5。
图3.7 温州浅滩淤泥e-ρ回归关系曲线
3.4.4.4 液限wL与塑限wp之间的关系
温州浅滩淤泥的塑限wp与液限wL的散点图及回归拟合曲线如图3.8所示。两者之间存在很好的线性递增关系,拟合曲线方程为wp=0.4 0wL+6.63,相关系数R=0.9996≈1。
图3.8 温州浅滩淤泥wp-wL回归关系曲线
3.4.4.5 液限wL与塑性指数 Ip之间的关系
塑性指数Ip与液限wL之间的关系图即为塑性图,为细粒土分类的依据[183]。温州浅滩淤泥的塑性指数Ip与液限wL的散点图及回归拟合曲线如图3.9所示。两者之间存在很好的线性递增关系,拟合曲线方程为Ip=0.60wL-6.61,相关系数R=0.9998≈1。
图3.9 温州浅滩淤泥Ip-wL回归关系曲线
3.4.4.6 塑限wp与塑性指数 Ip之间的关系
温州浅滩淤泥的塑性指数Ip与塑限wp的散点图及回归拟合曲线如图3.10所示。两者之间存在很好的线性递增关系,拟合曲线方程为Ip= 1.50wp-16.52,相关系数R=0.999。
3.4.4.7 压缩系数a与压缩模量Es之间的关系
温州浅滩淤泥的压缩模量Es与压缩系数a的散点图及回归拟合曲线如图3.11所示。如果对两者进行线性拟合,则两者之间存在较好的线性递减关系,线性拟合方程为Es=-1.15a+3.52,相关系数R=-0.904。
根据土力学理论,土在侧限条件下,压缩模量Es与压缩系数a之间存在如下换算公式:
图3.10 温州浅滩淤泥Ipwp回归关系曲线
图3.11 温州浅滩淤泥Es-a回归关系曲线
温州浅滩软土工程特性及固结沉降规律研究
式中:e1为压应力在100kPa时对应的孔隙比。
由式(3.31)可以看到,Es与a之间存在乘幂关系,如果将两者的散点图进行乘幂回归拟合分析,其拟合曲线如图3.11所示,相关系数R=-0.911,比线性拟合效果更好,乘幂拟合方程为Es=2.4 7a-0.80。
将上述温州浅滩淤泥物理力学性质指标之间具有的典型相关关系进行汇总,结果见表3.7。
表3.7 温州浅滩淤泥物理力学参数之间典型的相关性汇总表
除了以上讨论的温州浅滩淤泥的物理力学性质指标之间所具有的相关性外,抗剪强度指标c,φ值也是一对互相关的量,它们由同一试验得出,同时出现在库仑抗剪强度公式(τ=c+σtanφ)中,在计算地基承载力、判断地基稳定性时均要用到这组指标。温州浅滩淤泥的抗剪强度试验分为直剪快剪试验、直剪固结快剪试验和三轴UU 试验,对各种试验条件下求得的抗剪强度指标进行相关性分析,结果见表3.8。
表3.8 不同试验方法下淤泥抗剪强度指标相关性分析
由表3.8的结果分析可见,直剪快剪试验得到的抗剪强度指标相关性很小,离散性很大;而直剪固快试验和三轴UU试验得到的抗剪强度指标相关性好一些,两者之间具有一定的相关性。
⑧ 淤泥软土土工参数统计特征研究
根据勘察报告资料[171][175][176],本书通过对温州浅滩研究区域内29个勘探钻孔共312个原状淤泥土样的土工试验结果进行整理分析,统计其各项物理力学性质指标的特征,得到各土工参数的统计特征见表3.2。
表3.2 温州浅滩淤泥物理力学参数统计特征汇总表
*相当于压应力从 100kPa变化到 200kPa时对应的指标值;关于固结系数的讨论详见第四章。
表中温州浅滩淤泥软土的主要物理力学性质指标的取值范围、均值、方差、标准差、点变异系数、偏度、峰度、置信区间等统计特征一目了然,还可以根据其偏度、峰度值判断各项指标的分布形态,是否符合正态分布,以及与正态分布的差异等。最后,给出了各项土性参数的设计标准值。
通过对表3.2中数据的综合分析可以发现,温州浅滩淤泥的物理性质指标的点变异性比其力学性质指标的点变异性要小,一般其物理性质参数的点变异系数δ<0.1,属于变异性很小;而其力学性质参数的点变异系数0.1<δ<0.3,属于变异性小 中等,但总体而言,研究区域内淤泥软土的各项指标值均具有较好的稳定性。此外,温州浅滩淤泥的物理性质指标一般不服从正态分布,而其力学性质指标基本符合正态分布的规律。
综上所述,温州浅滩淤泥软土的主要工程特性可以概括为“四高二低”,即天然含水率高、孔隙比高、压缩性高、灵敏度高、渗透性低、抗剪强度低,归纳概括如下:
(1)天然含水率高
温州浅滩淤泥的天然含水率w均大于50.0%,且均大于其液限值wL(w>wL),w超过wL为2%~2 0%,大部分土样的天然含水率超过其液限值 10%左右。淤泥液性指数IL在0.86~2.07之间,属于软塑 流塑状态。且淤泥饱和度高,Sr基本在93%~101%之间,大部分土样的饱和度大于95%,基本属于饱和黏土。
(2)孔隙比大、压缩性高
温州浅滩淤泥的初始孔隙比e在1.370~2.190之间,其值均大于1,且当压应力从100kPa增加到200kPa的过程中,淤泥的平均压缩系数a为1.41MPa-1,平均压缩模量Es为1.90MPa,平均压缩指数Cc为0.543,属于高压缩性土。
(3)渗透性差
温州浅滩淤泥的竖直向渗透系数Kv平均值为3.9×10-7cm/s,水平向渗透系数Kh平均值为4.2×10-7cm/s,较竖直向渗透系数大(kh>kv),渗透系数小,渗透性差。土体受压后,其渗流固结过程将十分缓慢。
(4)抗剪强度低
由不同抗剪强度试验方法得到的土样抗剪强度指标来看,淤泥黏聚力(cq,ccq,cuu)及内摩擦角(φq,φcq,φuu)均较小,这是影响地基承载力和路堤抗滑稳定的关键参数。温州浅滩淤泥的抗剪强度指标小,则天然地基承载力低,易产生滑动失稳、塌陷等破坏。
(5)灵敏度较高
温州浅滩淤泥的灵敏度St为2.02~3.68,平均为2.84,属于中等灵敏土。淤泥软土灵敏度高,说明其结构性强,受到扰动后,其结构强度将大大降低。
⑨ 北京市地面沉降区含水岩组和压缩层划分
刘予叶超
(北京市地质环境监测总站,北京,100037)
【摘要】通过北京地面沉降区综合基础地质及地面沉降专项调查,查明了沉降区水文地质、工程地质条件及地面沉降分布现状,并在典型地面沉降区开展了钻探和各种水文地质、土工试验工作。根据上述成果资料,首次对北京市地面沉降区的含水岩组和压缩层组进行了划分,初步建立北京市地面沉降地质模型,为首都地面沉降网站建设及地面沉降预警预报系统建立奠定了基础。本文对此作一概括介绍。
【关键词】北京市地面沉降含水岩组压缩层组
1引言
1.1研究工作的目的和意义
地面沉降是指在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象。地面沉降给城市建筑物、道路交通、管道系统及给排水、防洪等带来了诸多困难。特别是一些建在第四纪松散堆积平原区的城市,受地面沉降灾害的影响尤为严重。
地面沉降是北京平原主要的地质灾害之一,其沉降的范围和幅度逐年扩大,目前发生地面沉降的面积已达到2815km2,累计最大沉降量约722mm。除东郊地区地面沉降仍在继续发展外,远郊昌平区海洛、顺义城南、大兴区榆垡又形成了3个新的地面沉降区。地面沉降已造成厂房、居民区楼房墙壁开裂、地基下沉、地下管道工程损坏50余处,同时导致一些建筑物的抗震能力降低和大量测量水准点失准,对首都城市建设和人民财产安全构成威胁。
本项工作的目的是初步建立北京市地面沉降地质模型,为下一步研究地面沉降机理、建设地面沉降监测网站、预测地面沉降发展趋势、建立地面沉降预警预报系统,提出地面沉降危害防治措施,为首都规划和城市建设提供基础资料。
1.2研究工作概况及存在问题
北京市地面沉降主要发生在北京北部、东部、南部平原地区,该区地质研究程度较高,完成了大量的区域地质工作,水文地质、工程地质工作,环境地质、灾害地质工作。
北京市地面沉降研究工作起步较晚,1984年北京市水文地质工程地质公司、北京市测绘院、北京市勘测处共同编制了《北京市地面沉降调研报告》;1985年北京市水文地质工程地质公司提交了《北京市地面沉降工程地质勘察设计》;1990年建成北京市第一个地面沉降监测站(八王坟地面沉降监测站),为研究北京市东郊地区地面沉降形成机理、发展趋势奠定了基础;同年提交了《北京市东郊地面沉降工程地质调查与八王坟监测站建站阶段报告》;1992年提交了《北京市东郊地面沉降与地下水开采量关系研究报告》。
综上所述,北京平原基础地质、水文地质、工程地质研究程度较高,但以往工作主要是为工农业供水及城市开发建设服务的,对地面沉降的研究程度较低,特别是尚未划分出北京市地面沉降区含水层组和压缩层组,地面沉降机理、发育规律等方面的研究相对薄弱。
1.3研究工作的技术路线和方法
本次研究采用的技术方法是选择地面沉降灾害发育较重、环境地质条件具有代表性的地区,通过地面调查与测量、遥感解译、物探等方法,查明北京平原区地面沉降历史、现状和发展趋势。在典型沉降区开展了专门水文地质、工程地质钻探,进行了大量的抽水试验、土工试验,查明地面沉降区的地层结构、以及含水层组和可压缩层组的埋藏分布特征,含水层组水文地质参数、可压缩层组物理力学性质、土力学参数及孔隙水压力等,为划分沉降区含水层组和压缩层组提供可靠依据。
2北京平原区地质环境背景
2.1气象水文
本市气候属于温带大陆性季风气候,年平均气温11.7℃,北京市多年平均降水量588.28mm,年降水量最大值1406mm(1959年),最小值256.2mm(1921年)。
北京地区水系属海河流域,河网发育,大小河流100余条,长2700km。这些河流分属五大水系,由西向东依次为大清河水系、永定河水系、北运河水系、潮白河水系、蓟运河水系,河流总体流向为自西北流向东南,最后汇入渤海。
2.2地形地貌
本市地形西北高,东南低,西部和北部是太行山脉和燕山山脉连绵不断的群山,一般海拔高度1000~1500m,山前冲洪积扇坡降1‰~5‰,平原大部分地区坡度小于0.5‰。地貌分为西部山区、北部山区和东南平原三大单元。
2.3 平原区地质概况
2.3.1 地层
北京平原区地层,除缺失奥陶系上统(O3)、志留系(S)、泥盆系(D)、石炭系下、中统(C1-2)、白垩系上统(K3)外,从元古界至第四系地层均有分布。地层由老到新分述如下:
(1)元古界(Pt)主要地层岩性为长城系、蓟县系、青白口系硅质白云岩、砂岩、页岩,局部有轻微变质。
(2)古生界(Pz)主要地层岩性为寒武系、奥陶系、石炭系和二迭系碳酸盐岩、碎屑岩及煤系地层。
(3)中生界(Mz)主要地层岩性为侏罗系、白垩系火山熔岩、火山碎屑岩及煤系地层。
(4)新生界第三系(Tr)的始新统(E2)主要岩性为暗紫色或猪肝色砂砾岩夹泥岩或砂质泥岩,呈半胶结状;渐新统(E3)主要岩性为灰色、灰褐色、灰绿色砂质泥岩,粉砂岩与含角砾凝灰岩夹黑色页岩,灰绿色硬砂岩;中—上新统(N1-2)主要岩性为棕黄色、棕红色泥质砂岩、砂质泥岩,棕褐色、灰色含砾硬砂岩、硬砂岩夹细砾岩。
(5)新生界第四系(Q)在北京平原区第四系厚度变化大,由山前到平原厚度由数十米到五六百米,与下伏第三系多呈平行不整合接触。
a.下更新统(Q1)为河湖相沉积物,岩性为粘性土夹砾石,或粘性土与砂层互层,厚度100~300m。
b.中更新统(Q2)一般埋藏于地表50~70m之下,西部地区较浅。其下部为黄棕、棕红色含砂性土,含砾粗砂及砾石层,局部地区为灰黑色粘性土含砂,底部为粘性土含砾、砂砾石和钙质结核混杂的堆积物,厚度70~110m。
c.上更新统(Q3)在山前台地及平原区广泛分布,山前台地岩性为黄土状粉质粘土及黄土状粉土,褐黄色、棕黄色。含钙质结核,虫孔、针孔、垂直节理发育,下部含砂砾石层,局部钙质胶结,致密坚硬;平原区地层以多层结构为主,岩性为砂砾石层或砂层与褐黄色、黄灰色粘性土互层。砾石粒径由西向东逐渐变小,厚度20~90m。
d.全新统(Q4)主要岩性一般为粘性土、细砂和砂砾石层,夹沼泽相泥炭层或有机质淤泥层,厚度一般5~10m,厚的可达20~25m。
2.3.2地质构造
北京平原区属于中朝准地台之华北断陷拗的西北隅,系中朝准台地新生代以来的下降区,周边常以断裂与邻区为界,近一步划分为北京迭断陷、大兴迭隆起、大厂新断陷3个Ⅲ级构造单元(见图1)。
图1北京市平原区基底构造与第四系厚度图
北京平原区主要构造形成于中生代(燕山运动),新生代以来受喜马拉雅造山运动的影响,得到进一步的改造。在中生代末期形成了许多雁行式排列的隆起带和凹陷带,发育一系列的北北东和北东向断裂,并有北西西向或北西向的张性及张扭性断裂与其垂直或斜交。平原区主要有六条活动断裂,分别为八宝山断裂、黄庄—高丽营断裂、良乡—前门断裂、南苑—通县断裂、马坊—夏店断裂、南口—孙河断裂。
2.4平原区第四系水文地质条件
2.4.1地下水系统及其特征
根据水系流域、地貌部位、地下水的含水介质结构、赋存条件和地下水水力特征和水力联系等,将北京平原区划分5个系统,各系统水文地质特征见表1。
2.4.2地下水补给、径流、排泄特征
第四系地下水的流动特征,是第四系地下水补给、径流、排泄条件的综合体现。第四系潜水、浅层承压水的补给来源主要为大气降水入渗,其次为山区侧向径流补给,地表水、渠道水的渗漏补给以及农田灌溉回归水的入渗补给。
表1第四系地下水系统特征一览表
潜水、浅层承压水的排泄,主要是人工开采,其次是地下水蒸发和侧向径流排泄。平原区地下水蒸发排泄,主要集中在潜水水位埋深小于4m的地区,上部潜水对下部浅层及中深层承压水的越流补给也是上部潜水排泄的一个途径。
平原区潜水、浅层承压水在天然条件下的径流方向与地形地貌变化相一致,即由山前向平原方向运动,受集中开采的影响潜水、浅层承压水也由降落漏斗四周向漏斗中心运动。
中深层和深层承压水,因目前还未开采,径流场变化不大,以水平径流为主。
2.4.3地下水动态
(1)地下水年动态特征
研究区潜水动态变化以气象—开采型为主,潜水年内动态变化主要受降水和人工开采的影响。在一个水文年内,潜水位季节变化较明显。在4~6月水位达到最低值。7~9月水位出现峰值,水位变幅可达5~10m。
承压水是平原区主要开采目的层之一,人工开采是影响承压水位动态变化的最主要因素。浅层承压地下水动态类型为径流—开采型,承压水季节性动态变化与潜水动态变化规律基本一致,在一个水文年内,也有一次上升期和一次下降期,只是承压水头随降水而出现峰值的时间有所滞后,承压水年最低水位一般出现在5~7月,年最高水位一般出现在10至翌年2月,年水位变幅为1~3m。
(2)地下水多年动态特征
图2表明:20世纪70年代以前,北京市地下水开采量小,采补基本平衡,地下水基本呈天然状态;70年代以后,由于城近郊地下水开采量大幅增加,城近郊地下水位下降很快;80年代,由于从1980年至1984年北京地区出现了连续5年的干旱少雨气候(5年平均降水量459.4mm),地下水补给量减少,开采量增加,地下水位快速下降,在城近郊集中开采区承压水水位下降较快;90年代,地下水开采量基本得到控制,1994~1998年连续出现4个偏丰年份,城区地下水位有所上升;从1998年底至2003年,由于5年连续干旱,地下水补给量减少,地下水水位与1998年年底水位相比,潜水和承压水水位最大下降幅度均在15~20m左右,年均下降为3~4m/a。
图2北京大学(承压水)和首都师范大学(潜水)观测孔地下水位动态曲线
2.5北京平原工程地质条件
北京平原位于华北平原的山前倾斜平原部位,北北东向活动断裂构造控制了新生代以来平原区的基本格局。平原区大部分为第四系松散的陆相沉积物,从下更新统(Q1)到全新统(Q4)地层均有分布;按其成因类型可分成冲积相、冲洪积相、河湖相和山麓坡洪积相地层;地层岩性有卵砾石、砂类土及粉土、粘性土等。
在山前沿山区边缘分布着大大小小的坡积群、洪积锥、黄土台地以及残山、残丘等,宽度1km至数千米不等。岩性以碎石、卵砾石和砂层透镜体的黄土类土为主,土体结构复杂。
平原区主要由五大河流冲洪积作用形成的扇前平原,相邻两扇交接部位地势略低,形成扇间洼地。该区是粘性土为主体的多层土体结构类型。
3北京地面沉降区含水岩组及压缩层划分
至1999年,北京市地面沉降量大于50mm的面积2815km2,大于100mm的面积为1826km2,分布在南北两区。北区主要分布于城区及北、东、南郊区,面积约1851km2,包括东八里庄—大郊亭沉降区(沉降中心累计沉降量为722mm)、来广营沉降区(沉降中心累计沉降量为565mm)、昌平沙河—八仙庄沉降区(沉降中心累计沉降量为688mm)及顺义平各庄沉降区(沉降中心累计沉降量为250mm);南区主要分布于大兴区南部的榆垡、礼贤一带,面积约964km2,为大兴榆垡—礼贤沉降区(沉降中心累计沉降量为661mm)。
北京地面沉降与第四系地层的成因类型、岩性、厚度、结构特点、物理力学性质等内在因素密切相关,地下水开采是形成地面沉降的主要外部原因,因此划分沉降区含水层组及压缩层组、分析地下水含水层和压缩层组的分布与埋藏条件、确定主要开采层和压缩层对地面沉降贡献的大小具有重要意义。
3.1沉降区含水岩组及压缩层划分的原则与依据
本次划分含水岩组及压缩层组的原则与依据如下:
(1)依据《北京地质志》、《北京市(1:5万)区域地质调查报告》、水文地质勘查资料,结合本次望京站、王四营站、天竺站第四系孢粉、古地磁资料;
(2)根据第四系成因类型、时代、岩性、埋藏条件;
(3)根据平原区第四系地下水补迳排条件、地下水流动特征及开采条件;
(4)根据可压缩层物理力学性质指标、固结程度、原位测试指标。
3.2含水岩组划分
根据上述原则将北京地面沉降区第四系含水层划分为3个含水岩组(见表2):
表2北京地面沉降区含水岩组划分简表
第一含水岩组(潜水、浅层承压含水层)为全新统(Q4)和上更新统(Q3)地层;
第二含水岩组(中深层承压含水层)为中更新统(Q2)地层;
第三含水岩组(深层承压含水层)为下更新统(Q1)地层。
各含水组埋藏条件及水文地质特征如下:
3.2.1第一含水岩组
广泛分布于北京平原区,在各河流冲洪积扇顶部地区为单一砂砾石结构的潜水含水层,底板埋深20m左右;浅层微承压水埋深20~40m,浅层承压水埋深40~80m,含水层组底板埋深小于100m,主要为全新统和上更新统冲洪积物。根据水文地质条件、地下水类型和开采状况等划分潜水含水层和浅层承压水含水层两个亚组:
(1)潜水含水层亚组
根据水文地质结构的差异可将该组分为冲洪积扇顶部潜水区和冲洪积扇中下部潜水区。
a.冲洪积扇顶部潜水区:含水层为上更新统(Q3)和全新统(Q4)冲洪积相为主的砂卵砾石,构成单一潜水含水层。含水层砂卵石厚度15~120m,砾卵石呈圆状,次圆状,砾径一般2~8cm,大者可达30cm。渗透系数为300~500m/d,含水层富水性好,单井出水量为5000m3/d。目前,大部分地区已成为严重超采区或超采区。
b.冲洪积扇中下部潜水区:含水层为上更新统(Q3)和全新统(Q4)沉积物,西部、北部含水层岩性以中粗砂、砾石为主,富水性较好。向东、南粒径逐渐变细,含水层主要为粉细砂层,局部河道地区有少量砂卵砾石层,富水性由西北向东南逐渐变差。
(2)浅层承压水亚组
含水层底界深度80~100m,主要为上更新统(Q3)沉积物,广泛分布于北京平原中下部地区。
永定河冲洪积扇中下部地区,含水层以多层中细砂、粉细砂层为主,局部见有1~3层砂砾石层,含水层累计厚度20~35m。根据分层抽水实验资料,该区浅层承压水含水层渗透系数一般在5~20m/d。单井出水量1500~3000m3/d,向下游方向减小至500~1500m3/d。
潮白河冲洪积扇中下部地区,含水层颗粒由北向南逐渐变细,层次增多。一般由两到三个较稳定的砂砾石层构成,含水层累计厚度20~30m。根据分层抽水试验资料,浅层微承压水渗透系数一般为3~5m/d,浅层承压水渗透系数一般在10~20m/d,单井出水量3000~5000m3/d。
温榆河冲洪积扇中下部含水层为2~3层砂砾石或砂层,含水层单层厚度5~10m。含水层累计厚度20~30m,单井出水量500~3000m3/d。
3.2.2第二含水岩组
广泛分布于北京平原冲洪积扇中下部地区。地下水类型为中深层承压水,含水岩组顶板埋深80~100m,底板埋深300m左右。本含水岩组为第四系中更新统(Q2)冲洪积物、冲湖积物,岩性以中粗砂为主,部分含砾。含水层为多层结构。按开采现状及其动态特征分为中深层承压水上段和下段,上段埋深100~200m,下段埋深200~300m:
(1)第二含水岩组上段
a.永定河冲洪积扇。该含水岩组底板埋深小于150m,含水层由多层砂砾石构成,累计厚度5~20m。根据分层抽水试验资料,含水层渗透系数一般在5~30m/d,单井出水量500~1500m3/d。
b.潮白河冲洪积扇。该含水组底界深度200m左右,含水层由多层砂砾石、砂层构成,累计厚度30~50m。根据分层抽水实验资料,上部含水层渗透系数20~25m/d,中部为10~15m/d,下部为1~5m/d,单井出水量500~3000m3/d。
(2)第二含水岩组下段
a.永定河冲洪积扇。目前永定河冲洪积扇第二含水岩组下段钻孔揭露资料较少。
b.潮白河冲洪积扇。该含水层底界深度小于300m。主要分布于北京平原东北、东南部的凹陷区内。含水层岩性以中粗砂、砾石为主,累计厚度30~50m。单井出水量500~1500m3/d。
3.2.3第三含水岩组
该岩组主要分布在北京平原东北、东南部的凹陷中心地区。地下水类型为深层孔隙承压水,含水组顶板埋深300m左右。含水层岩性为第四系下更新统(Q1)冲积物、冲湖积物,岩性以中粗砂、砾石为主,含水组为多层结构,顶部有厚度大于30m的粘性土隔水层,与上部中深层承压水含水层水力联系差。
3.3压缩层划分
依据划分原则可将北京地面沉降区可压缩层划分为3个压缩层:第一压缩层底板埋深小于100m,第二压缩层底板埋深小于300m,第三压缩层顶板埋深大于300m。
各压缩层的物理力学指标见表3。
表3北京地面沉降区压缩层物理力学指标综合表
3.3.1第一压缩层
第一压缩层广泛分布于北京平原区,底板埋深小于100m。地层岩性为第四系上更新统冲积相、冲湖积相粉土、粘性土层,厚度小于50m到大于80m不等(见图3)。根据其地层岩性结构和压缩性可分为上下两段:
(1)第一压缩层上段:
地表以下0~10m,城区为人工回填土层,大部分地区为褐黄色粉土、粉质粘土层,可塑—硬塑,湿—饱和,中等压缩性,Es值在8~15MPa之间。
地表以下10~15m,北京东部、东北部、北部地区为河湖淤积的粉质粘土、粘土,灰褐—灰色,含有机质,软塑—可塑、密实度较差,压缩性较高,Es值在4~8MPa之间,是该段主要的压缩层;南部地区为冲洪积粉质粘土、粉土层,褐黄色、湿—饱和,可塑—硬塑、中—中上密实,Es值在10~20MPa之间。
地表以下25~40m,北京东部、东北部、东南部地区为静水环境洪淤积的粘土、粉质粘土,灰色—灰褐色、可塑、压缩性中等,Es值在5~10MPa之间,含有机质、螺壳,工程地质性质较差,为相对软弱土层;南部地区为冲洪积的粉土、粉质粘土层,褐黄色,饱和,硬塑,低压缩性,Es值在15~25MPa之间。
(2)第一压缩层下段:
地表以下40~50m为稳定的粘土、粉土层,北京北部、东部、东北部、东南部等地区广泛分布。岩性为灰色,褐灰色粘土、重粉质粘土层,一般呈可塑—硬塑状态,中等密实,含水量较大,压缩性中等,Es值在12~22MPa之间;在北京南部地区岩性为粉土、粉质粘土层,褐黄色,饱和,硬塑,压缩性低,Es值在18~28MPa之间。
图3地下0~l00m压缩层等厚度分区图
地表以下50~100m为3~4层砂层夹2~3层粉质粘土、粘土层,在沉降区广泛分布。粉质粘土、粘土层多呈透镜体状,厚度20~40m不等。粉质粘土、粘土层为灰褐色一黄褐色,饱和,局部含有机质,可塑~硬塑,中低压缩性,Es值在20~26MPa之间。
3.3.2第二压缩层
广泛分布于北京冲洪积扇中下部地区,岩性为中更新统(Q2)冲洪积、冲湖积的粉土、粉质粘土、粘土层。在北京西南部,该组底板埋深一般小于150m;在北京东部、北部该组底板埋深可达280m左右(见图4)。压缩层占总厚度的比例一般为0.6~0.8。以埋深200m为界,可分为上下两段。
(1)第二压缩层上段
该段上部为10~30m左右的粉土、粉质粘土、粘土层,夹粉细砂薄层。在北京东部、东北部地区为冲洪积粉质粘土、粘土层,灰褐色—褐黄色,饱和,硬塑,结构致密,局部夹灰黑色粉土、粉砂层,含水量为25~34%,压缩模量Es值在21~33MPa之间;在北京南部地区为冲洪积褐黄色粉土、粉质粘土层,结构致密,硬塑—坚硬状态,压缩性低,含水量20~30%,压缩模量Es值在30~35MPa之间。
图4地下100~200m压缩层等厚度分区图
该段中下部为粉质粘土层。灰褐色、灰黄,饱和、硬塑、压缩性低,压缩模量Es值在35~50MPa之间。局部地区分布有大量淤泥及淤泥质粘土层,压缩性相对较高,压缩模量Es值在20~25MPa之间。
(2)第二压缩层下段
该段上部为厚15~25m左右的粉质粘土层,岩性为灰黑—灰褐色—灰黄色粉质粘土、粘土层,饱和、硬塑、结构致密、压缩性低,压缩模量Es值在50~70MPa之间。
该段中下部为灰褐—灰黑色粉质粘土层,夹灰褐色粉土、粉细砂薄层,一般呈硬塑—坚硬状态,结构密实,压缩性低,压缩模量Es值在50~70MPa之间。局部区域含淤泥质粘土及淤泥层,压缩性相对较高,压缩模量仅为27.7MPa。
3.3.3第三压缩层
主要分布在北京凹陷中心区范围内,为第四系下更新统(Q1)河湖相沉积的灰褐色、灰色粉质粘土、粘土层。结构致密,大部分呈坚硬状态,密实度高,压缩模量大部分大于70MPa。400m以下土层多呈固结状态,有胶结现象,压缩模量大部分大于100MPa,压缩性极低。压缩层中夹冲洪积、冰水沉积的黄色中粗砂、圆砾石层,密实度高。
4结论
(1)北京平原区地下水划分为永定河冲洪积扇系统,潮白河冲洪积扇系统,拒马河、大石河冲洪积扇系统,温榆河冲洪积扇地下水系统,蓟运河冲洪积扇系统等五个地下水系统。按含水介质成因类型、地层时代、岩性及埋藏条件等,将北京地面沉降区的含水层划分为3个含水岩组:
第一含水岩组含水组底板埋深小于100m,在冲洪积扇顶部或中上部以单一结构的砂卵砾石层为主,地下水类型主要为潜水。冲洪积扇中下部及冲湖积平原区为多层结构,地下水类型主要为潜水、浅层微承压水、浅层承压水;
第二含水岩组主要分布于冲洪积扇中下部及冲湖积平原区,为多层结构。地下水类型为中深层承压水。永定河冲洪积扇底板埋深大部分地区小于150m,潮白河冲洪积扇底板埋深达270~280m;
第三含水岩组主要分布在北京平原东北、东南部的凹陷中心区。地下水类型为深层承压水,顶板埋深270~280m。
(2)根据土体成因类型、地层时代、岩性、埋藏条件,物理力学性质、固结程度、原位测试指标,将北京地面沉降区划分为3个压缩层:
第一压缩层广泛分布于北京平原区,底板埋深一般小于100m。整体上由西向东、由北向南,压缩层由冲洪积相的粉土逐渐过渡为冲洪积、湖积相粉质粘土、粘土层,一般呈可塑—硬塑状态,为正常固结土。
第二压缩层广泛分布于北京冲洪积扇中下部地区。岩性为中更新统冲洪积、冲湖积的粉土、粉质粘土、粘土层。北京平原西南部该组底板埋深一般小于150m;平原东部、北部该组底板埋深可达280m左右。压缩层占总厚度的比例一般为0.6~0.8,粘性土呈可塑—硬塑状态,为超固结土。
第三压缩层主要分布在北京平原凹陷中心区范围内,顶板埋深大于270m。压缩层以粘土为主,呈坚硬状态,为超固结土。
本次对沉降区含水层组及压缩层组的划分,以及获取的各含水层组及压缩层组基本地质参数,为下一步地面沉降监测网站建设、地面沉降预警预报系统建立奠定了坚实基础。
参考文献
[1]天津市环境地质研究所,地矿部水文所.天津市地面沉降机理研究及预测预报综合治理科研报告.1995
[2]胡瑞林等.粘性土微结构定量模型及其工程地质特征研究.1995
[3]曹文炳.应用结合水渗流机制说明粘性土释水机制的初步探讨.全国第二届地面沉降学术讨论会论文,1980
[4]曹文炳,李克文.水位升降引起的粘性土层释水、吸水与越流发生过程的室内研究方法,勘察科学技术.1986,(4)
[5]冯晓腊,沈孝宇.饱和粘性土的固结特性及其微观机制的研究.水文地质工程地质.1991,(1)
[6]谢振华等.首都地区地下水资源和环境调查评价.北京市地质调查研究院,2003
[7]蔡启新等.北京统计年鉴(2003年).2003
[8]贾三满等.北京市地面沉降网站预警预报系统(一期)工程地面沉降调查报告.2004
[9]北京市地质勘察院.北京市东郊地面沉降与地下水开采量关系研究报告.1992
[10]北京市用水调研课题组.北京市用水调研与需水预测研究报告.2002
[11]王子国等.北京市区域地质志.1991
⑩ 胶州湾软弱土层工程地质性质
7.2.1 物质组成
通过胶州湾海积软土的粒度分析发现,土层中粉粘粒组的含量较高;其次为砂粒组的含量;另外,少部分的黏粒与粉粒结合形成具有一定抗水性的假粉粒,具有一定的团聚度。软土中难溶盐含量较低,易溶盐含量较高,说明土体的强度很低。虽然土体中含有较高含量的粉黏粒、“假粉粒”,但有机质含量较高,因此土体颜色呈现黑灰色,土的亲水性强。同时,阳离子交换容量和比表面积也都较大,表现为土体活动性比较强烈,说明该软土属于亲水性土体。在工程上,这给土体的排水固结造成很大困难,致使排水时间过长。
7.2.2 结构特征
由于软黏土独特的沉积环境,使软土具有一定的结构性特征,主要表现为:
1)结合水连接是黏土颗粒间水分子(为极性分子)在不同电荷作用下定向排列形成的,黏土颗粒外围的结合水,越是靠近黏粒表面,受吸附力越大,其分子排列越紧密,就越具有较大的黏滞性和抗剪强度,从而形成一定的粒间连接,大量的水使含水量增大,弱结合水增多,因而排水较困难。
2)水中大量微生物-淤泥细菌作用可以产生出CO2,CO2与土中的CaCO3可形成Ca(HCO3)2,到一定深度后,细菌大量死亡,CO2减少,CaCO3又沉淀下来,形成黏粒间某种程度的灰质胶结,这是产生假粉粒的主要原因。
由于以上的结构性,使得软土在工程地质特性上表现为具有较高的孔隙比和含水量。另外,海水中具有丰富的电解质,因而海积黏土的结构类型多属疏松絮凝状。絮凝状结构由片状颗粒搭成的絮凝状结构单元体构成,颗粒排列比较疏松,孔隙比较大,孔隙间连通性较差,影响了土中孔隙水的排出、位移和流动,所以固结速度较慢。
7.2.3 淤泥质软土的力学性质
对软土物理力学性质的测试一般分土工试验和原位测试两类。常用的土工试验包括重度、含水量、液限、塑限、粒度分析、固结、压缩、剪切试验等。胶州湾淤泥质软土土工试验资料的结果表现出离散性大、可靠性差的特点,分析其原因主要有两个方面:①含水量高、流态的软土难取得原状样;②软土样在运输、保存至试验的过程中难免遭受扰动和失水。
因而,测试结果常代表的是排水固结后或扰动后的软土性质。含沙多或以粉粒为主的软土的剪切试验结果一般低于软土天然抗剪指标,剪切试验结果常代表了重塑土的抗剪指标。排水固结后的软土样,压缩试验则表现出压缩性低于天然软土的实验结果。因此,在探讨胶州湾淤泥质软土性质的时候,主要利用土工试验所得的含水量、重度、液限、塑限资料,对软土的力学性质指标则主要运用原位测试数据。
原位测试方法对软土的评价避免了对土样的扰动或失水固结,能较真实地反映软土的实际特征。针对软土强度低的特征,选用静力触探试验(CPT)和十字板剪切试验(VST)较为理想。静力触探具有连续、快速、简便、精确、高灵敏度的特点,可以在现场直接测得土的贯入阻力指标,了解各土层原始状态的有关物理、力学性质;十字板抗剪试验能较客观地反映出软土的不排水抗剪强度值,同时能反映出重塑土的性质和灵敏度。这些指标对软土区的港口建设及有震动荷载的建(构)筑物的设计有着重要的参考价值。
7.2.3.1 淤泥质土静力触探试验资料分析
静力触探试验对软土的评价具有灵敏、精度高的特点,其评价结果与利用含水量、孔隙比等物理参数对软土的评价结果相吻合。静力触探试验现场直接测得的是土的贯入阻力指标,要获得其他物理力学指标还需要借助经验公式。由于单桥静力触探使用时间较长,国内外已经积累了相当丰富的经验。根据胶州湾软土的特点,采用如下经验公式:
1)土的压缩模量Es=4.13P0.687s
2)土的变形模量E0=6.03P1.45s+2.87
3)地基标准承载力f=0.0807Ps+0.049
结果显示,胶州湾淤泥质土的比贯入阻力Ps很低,在0.05~0.90范围内;压缩模量Es在0.53~4.62MPa之间;变形模量E0在2.95~8.05之间;承载力特征值在53~121kPa。另外,表层0~0.5m比贯入阻力值一般要比0.5~1.0m处值大,经分析是因为表层淤泥质土的沙含量一般比其下部要多,导致表层比贯入阻力值偏大。
由于淤泥质土层是一种新近淤积的土层,没有完成全部的固结过程。在漫长的淤积过程中,一般底部土层由于受到上部土层自重压力的固结作用,其物理力学性质要逐渐比上部土层好;但由于其力学性指标绝对值相当小,一般这种细微的差别很难进行观察和描述。由于淤泥质土的这种特点,在实际工作中,很难根据钻探岩心野外鉴别对土层作准确的定性描述,若进行定量鉴定则困难。静力触探因其测试性能比较灵敏,连续性好,可以详细评价淤泥质土在垂向上的分布规律,能比较好地体现土的力学性质同深度之间的线性关系,便于选择适当的压缩、变形及承载力指标。从图7.4可以看出淤泥质土的上述规律,比贯入阻力Ps值与深度呈正相关性,即随着深度的增加,Ps的值也增加。
图7.4 比贯入阻力(Ps)平均值随深度变化曲线
7.2.3.2 淤泥质土十字剪切板试验资料分析
对胶州湾地区上部海相淤泥-淤泥质粉质黏土层进行十字板剪切试验。十字板剪切试验结果Cu=3.52~15.2kPa,标准值约为6.5kPa;重塑土的抗剪强度Cu'=2.1~9.7kPa;灵敏度St=1.1~2.3。根据十字板剪切试验数据和分析结果来看,淤泥质土层十字板剪切试验抗剪强度Cu值随深度而增大,其重塑土的变化也大致相同。
胶州湾深水区含粉粒少的淤泥质土的灵敏度较低(St=1.1~2.3)。根据相关学者第四系力学性质分析,湾内近岸区以饱和粉粒为主的淤泥质土具有易液化、扰动后强度降低的特点,深水区以黏粒为主的淤泥质土灵敏度较近岸区低。
7.2.3.3淤泥质土工程地质灾害
淤泥质土对海岸工程的主要影响性状表现在长期、缓慢地使建筑物产生不均匀沉降和在较短的时间内发生沉降量过大等工程地质问题。
(1)高压缩性、不均匀性
淤泥质土呈饱和状态,含水量高。淤泥质土层的厚度常与海侵前原始地形及水动力条件、陆源物质有关,使得淤泥质土平面和垂向上成分不均、厚度不一,厚度差异能造成较大差异沉降。因淤泥质土中含有粉细沙薄层或透镜体,使侧向排水不均衡,这也是引发建筑物产生不均匀沉降的潜在因素;应根据其固结排水情况,判定其对地基变形的影响。
(2)触变性、低透水性
围海造田一般将淤泥质软土掩埋于地下。软土中含沙或较粗颗粒的地带,其透水性较好,易排水固结;随着填土时间的推移,软土的强度提高。但是,颗粒偏粗的淤泥质土具有较强的触变性,即具有较高的灵敏度。这种扰动后强度显着降低的特性,使得其静态强度满足建筑物的荷载要求时,尚需考虑震动荷载等对软土的影响。一旦受较大震动荷载影响,触变性特点使软土液化、失去强度,引起建筑物失稳,因差异沉降过大而破坏建筑物结构。填土下有软土而地基土未经处理的地区都有此类工程灾害。
对以细粒为主的淤泥区,因具有低透水性,使填土后淤泥中孔隙水难以排出,其强度提高不明显。
若上部已存在建(构)物,在外荷作用下不能很快排水固结,故易产生较高的孔隙水压力,降低地基土的强度,使建筑物处在长时间、缓慢的沉降状态之中。特别是在动荷载(强振动或地震)的作用下,更易发生不同程度压缩变形,从而造成地基土破坏,使建筑物失稳。
(3)低强度
湾内地基承载力特征值在53~121kPa之间。又因固结程度差,灵敏度高,故抵抗外荷作用的能力低,而且易产生扰动。扰动后的强度大约是原状土强度的20%~30%,故在施工中应尽量减轻土扰动,以利于保持土的天然强度。不排水三轴快剪试验强度很低,φ≈0°,c<0.02MPa;在排水条件下随固结程度的提高而增大,固结快剪φ=5°~15°,c=0.03~0.08MPa。因此,在施工过程中应该注意加荷速度。
(4)震害大
横波波速VS=123.50~164.60m/s,纵波波速VP=270~423m/s,属中软-软弱场地土。地震波在软土中传播时阻尼大,对于固有周期长的高层建筑物易产生共振效应,加重震害。
(5)具有较强的吸附力
主要表现在土与建(构)筑物底面的粘结力、真空负压和侧边阻力上。其中,“真空负压”是主要的。对于“吸附力”,有些场合是需要的,但有些场合需消除。例如在建筑物与土的接触处通水或通气,就可以大大地减少对建筑物的吸附力。