⑴ 压缩空气供应
在地下工程施工中,以压缩空气为动力的风动机具主要有凿岩机、装碴机、喷混凝土机、锻钎机、压浆机等。
压缩空气是由空气压缩机生产,并通过高压风管输送给风动机具的。
压缩空气的供应主要应考虑供应足够的风量以及必需的工作风压,尽量减少压缩空气在管路输送过程中的损失,从而达到节约能源、降低消耗的目的。
一、技术要求
(1)空压机站应提供能满足各种风动机械(具)设备正常运转及输送损耗所需要的风量。
(2)空压机站一般应靠近洞口,与铺设的高压风管路同侧,并注意防洪、防火、防爆破,机房要求地形宽敞,通风良好,地基坚固。
(3)高压风管的管径能满足施工高峰期最大供风量的需求;管路铺设时应尽量减少风压损失。
二、压缩空气供应工艺流程
压缩空气供应工艺流程如图10-3 所示。
图10-3 压缩空气供应工艺流程图
三、供风量的计算
供风量的大小可根据下式计算:
地下建筑工程施工
式中:n为同时使用的各种风动机械(具)的台数;q1为每台风动机械(具)的耗风量,可查阅有关机械手册,m3/min;k1为因机械磨损而使用风量增大的系数,取k1=1.2~1.3;c 为同时工作系数,如表10-4 所示;L 为高压风输送管路的理论长度,即实际铺设的管路长度与配件折算的管路长度之和(配件折算成管路长度查有关机械手册),km;a为每 1km高压风管在单位时间内的漏风量,取a=1.5~2.0m3/km·min。
表10-4 各种机械(具)同时工作系数值c
风镐和凿岩机同时工作系数
四、空压机站
为安装空压机,地下工程施工一般都需在地面设置空压机站,将空压机安装在站房内,如图10-4 所示。隧道施工时应设在洞口附近,并宜靠近变电站,应有防水、降温、保温和防雷击设施。如有多个洞口共用一个空压机站时可选在适中位置,但也应靠近用风量较大的洞口。地下矿山施工时,空压机站设在地面井口附近,尽量不超过 50m;应选择在空气清洁、通风良好的位置,与矸石山、出风井口、烟囱等距离不应小于 150m,并位于全井主导风向的上风方向。
图10-4 空压机站布置图
1—空压机;2—电动机;3—风包;4—过滤器;5—水泵;6—水池;7—电控设备
空压机站主要有空压机、配电设备、储风缸(俗称风包,用于均衡风压及排泄高压风中的油和水)、送风管及其配件、循环水池(用于冷却空压机)等组成。空压机按动力来源可分为电动和内燃两种。短隧道可采用移动式内燃空压机,长隧道可采用固定式大型电动空压机。
空压机所配置的台数应按下式计算确定:
地下建筑工程施工
式中:Q供为计算供风量,按式(10-4)计算;q2为台空压机生产的能力;u为海拔高度对空压机生产能力影响的折减系数,见表10-5;k2为空压机磨损引起效率降低的修正系数,取k2=1.05~1.10;k3为备用系数,取k3=1.3~1.5。
空压机的种类很多,按可移动性分有固定式和移动式两种,按动力来源分为电动和内燃两种,按工作原理分活塞式、螺杆式、滑片式、离心式、隔膜式等。短隧道施工多采用移动式内燃空气压缩机,长隧道、矿井施工多采用固定式大型电动空气压缩机。
表10-5 海拔高度影响折减系数
空压机组采用并列式布置,两空压机之间的净距不小于 1.5m。此外,还应考虑空压机出入、调换、加油、加水等方便。
五、高压风管
高压风管应采用经久耐用,容易维修和更换的镀锌钢管。
1.高压风管管径
高压风管管径应根据可能出现的最大风量和容许的最大风压损失来确定。
送风管末端的风压不小于0.6Mpa,以保证高压风通过胶管到达风动机械(具)后仍能保持0.5Mpa的风压,即风压损失Δp=0.1Mpa。
高压风管管径选择可按下列步骤进行:
(1)计算出送风管路最大的理论长度;
(2)根据最大供风量及送风管管路最大的理论长度,由表10-6 查得风管直径;
(3)根据查得的风管直径及最大供风量,查相关设计手册得出风压损失Δp 值,当Δp≤0.1Mpa时,则查得的风管直径即可使用,否则必须将风管直径加大一级,并按上述步骤重新选取,直至满足要求为止。
表10-6 允许通过风量与管径、管长关系
注:本表系按送风管始端风压为0.7MPa,钢管末端风压为0.6MPa,即风压通过管路的损失为0.1MPa。
2.高压风管管路铺设要求
(1)管路铺设时应做到平、顺、直,接头严密,架设牢固。
(2)有平行导坑的隧道,主风管路一般布置在平行导坑内横通道对面一侧,支管路从横通道到正洞。
(3)独头巷道的隧道,风管应位于水沟异侧。
(4)有计划地安装洞内支管路及闸阀,做到既满足各工点施工需要,又尽量减少管路配件数量。
(5)主风管路设在距工作面30~40m处,其末端配有分风器用的Φ50~Φ75mm高压胶管。风枪用的高压胶管一般为Φ19mm,其长度不超过 10m。
(6)严寒地区的洞外管路应采取防冻措施。
⑵ 制氮机从空气开始怎样制氮过程原理
PSA制氮基本工艺流程
空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。
左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。
同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。
为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。
右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。
制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。当流程处于左吸状态时,控制左吸的电磁阀通电,先导气接通左吸进气阀、左吸产气阀、右排气阀开启口,使得这三个阀门打开,完成左吸过程,同时右吸附塔解吸。当流程处于均压状态时,控制均压的电磁阀通电,其它阀关闭;先导气接通上均压阀、下均压阀开启口,使得这两个阀门打开,完成均压过程。当流程处于右吸状态时,控制右吸的电磁阀通电,先导气接通右吸进气阀、右吸产气阀、左排气阀开启口,使得这三个阀门打开,完成右吸过程,同时左吸附塔解吸。每段流程中,除应该打开的阀门外,其它阀门都应处于关闭状态。
⑶ 空气压缩机的工作原理
压缩机的工作原理
•
4.1吸气过程:
•
螺杆式进气侧的吸气口,必须设计得使压缩室可以充分吸气,而螺杆式压缩机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口的自由空气相通,因在排气时齿沟的空气被全数排出,排气完了时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入
,沿轴向流入主副转子的齿沟内。当空气充满整个齿沟时,转子的进气侧端面转离了机壳的进气口,在齿沟间的空气即被封闭,以上为,[进气过程]。
•
4.2封闭及输送过程:
•
主副两转子在吸气终了时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内封闭不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动,此即[输送过程]。
•
4.3压缩及喷油过程:
•
在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内的气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与空气混合。
•
4.4排气过程:
•
当转子的啮合端面转到与机壳排气相通时,(此时压缩气体压力最高)被压缩的气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口的齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行
。
⑷ 流程图中空气压缩机怎么画
如图所示1#2#即代表压缩机
⑸ 怎样操作空气压缩机的方法流程
运行开始前先进行检查
(1)检查确认各部位的阀门是否在正确位置。
(2)检查一切防护装置和安全附件是否处于完好状态。
(3)检查润滑油面是否合乎标准。
操作步骤
(1)首先按下空气干燥机“ON”按钮,然后让空气干燥机运行5分钟以上。观察干燥机是否运行正常平稳。
(2)按下空气压缩机“启动”按钮(或“*”键)。
(3)缓慢打开排气阀门至完全开启。
关机
(1)按下空气压缩机“停止”按钮(或“o”键)。
(2)按下空气干燥机“OFF”按钮。
(3)关闭排气阀门。
安全及注意事项
(1)当环境温度接近30摄氏度时,应打开排气扇降低室内温度。
(2)当环境温度超过30摄氏度时,应打开引风机降低室内温度。
(3)当室内噪声大于90dB时(A)时应戴防护耳罩。
⑹ 发动机涡轮增压、机械增压、自然吸气工作原理及流程图
涡轮增压器(Tubro)实际上就是一个空气压缩机。它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内?,叶轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。当发动机转速加快,废气排出速度与涡轮转速也同步加快,空气压缩程度就得以加大,发动机的进气量就相应地得到增加,就可以增加发动机的输出功率了。 涡轮增压的最大优点是它可在不增加发动机排量的基础上,大幅度提高发动机的功率和扭矩。一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器相比,可增加大约40%甚至更多。 增压发动机主要有4大类: 1.机械增压系统(Supercharger):装置在发动机上并由皮带与发动机曲轴相连接,从发动机输出轴获得动力来驱动增压器的转子旋转,从而将空气增压吹到进气岐道里。 优点:转子的速度与发动机转速是相对应的,所以没有滞后或超前,动力输出更为流畅; 缺点:由于它要消耗部分引擎动力,会导致增压效率不高。 2.废气涡轮增压系统:利用发动机排出的废气达到增压目的。增压器与发动机无任何机械联系,压气机由内燃机废气驱动的涡轮来带动。一般增压压力可达180~200kPa,或300 kPa左右,需要增设空气中间冷却器来给高温压缩空气进行冷却。国内轿车1998年开始在排量1.8的奥迪200上运用,以后又有奥迪A6的1.8T、奥迪A41.8T,直至帕萨特1.8T、宝来1.8T。 优点:增加效率高于机械增压; 缺点:发动机动力输出略滞后于油门的开启,加大油门后一般需要等片刻,稍后发动机会有惊人的动力爆发。 3.复合增压系统:即废气涡轮增压和机械增压并用,大功率柴油机上用的较多。复合增压系统发动机输出功率大、燃油消耗率低、噪声小,但结构过于复杂。 4.气波增压系统:利用高压废气的脉冲气波迫使空气压缩。这种系统低速增压性能好、加速性好、工况范围大;但尺寸大、笨重和噪声大.涡轮增压(Turbo) 涡轮增压简称Turbo,如果在轿车尾部看到Turbo或者T,即表明该车采用的发动机是涡轮增压发动机。 涡轮增压器实际上是种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与祸轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。 涡轮增压器的最大优点是能在不加大发动机排量就能较大幅度地提高发动机的功率及扭力,一般而言,加装增压器后的发动机的功率及扭矩要增大20%—30%。涡轮增压器的缺点是滞后,即由于叶轮的惯性作用对油门骤时变化反应迟缓,使发动机延迟增加或减少输出功率,这对于要突然加速或超车的汽车而言,瞬间会有点提不上劲的感觉 涡轮增压是欧洲申宝汽车发明的,大多用于柴油发动机 ,但现在也有很多用于汽油车, 尤其是大货车基本上都装有涡轮增压系统 发动机工作的两个要素:空气和燃油。无论怎样设计发动机,都要围绕着这两个要素做文章。想要提高发动机的功率和扭力,无非是提高发动机的供油量和进气量。增加供油量很容易,但是增加进气量就难了。因为,空气有特定的物理特性,仅仅靠自然吸气能力是有限的。于是,曾经在柴油发动机上大获成功的废气涡轮增压技术被移植到汽油机上。 发动机工作中排出的废气是高温高压的,通常会通过三元催化,消音器,排气管白白排出车外,废气涡轮增压发动机正是利用了废气,通过一个位于排气管的涡轮,废气的压力可以推动该涡轮高速旋转,而该涡轮通过一个联动装置,可以驱动另一个位于进气位置的涡轮也高速旋转(最高转速可达上万转/分)。进气涡轮通过旋转对新鲜空气进行压缩,使其密度大大增加,高压气体的温度很高,不适合发动机燃烧需要,所以还要通过一个中冷装置冷却一下,然后供发动机使用。通过涡轮增压,发动机的功率和燃烧效率可以大大提高,以1.8T为例,可以等同于2.3的自然吸气发动机。小排量,大功率,代表着当前发动机技术的最高水平。 最重要的是,该发动机的最大扭力可以从1750-4600转之间保持210的最大值,即发动机扭力曲线呈现平台结构,这是汽车发动机设计的最高目标,发动机的最大扭力区间极大,使得驾驶感觉任何时速段,动力源源不绝,用之不竭。这是世上任何一款自然吸气发动机都无法达到的高度。
⑺ 绘简图说明空气压缩机工作原理,并说明其拆装步骤及注
双螺杆空气压缩机工作原理:压缩主机是一种双轴容积式回转式压缩机。进气口开于机壳(Casing)的上端,排气口开于下端,一对高精密度主(阳)、副(阴)转子,则水平且平行装于机壳内部,主(阳)转子有五个形齿,而副(阴)转子有六个形齿。主转子直径较大,副转子直径较小。齿形呈螺旋状,环绕于转子外缘,两者齿形相互齿合。主、副转子二端分别由轴承支承,进气端各有一只滚柱轴承(Roller bearing)排气端各有两只对称安装的锥形滚柱轴承。机体驱动方式共分二种,一种为皮带传动式,另一种为直接传动式。直接传动式是以联轴器将电动机或其他动力源与主机结合在一起,再经一组高精密度增速齿轮将主转子转速提高。皮带传动式则没有增速齿轮,而由二个依速度比例制造的皮带轮将动力经由皮带传动。
⑻ 空气压缩机工作原理
压缩机工作原理:无油空气压缩机是属于微型往复式活塞式压缩机,电机单轴驱动对称分布曲柄摇杆机械结构,主运动付为活塞环,副运动付为铝合金圆柱面,运动付之间同活塞环自润滑而不添加任何润滑剂。压缩机通过曲柄摇杆的往复运动使圆柱面气缸的容积发生周期性变化,电机运转一周气缸容积有两次方向相反的变化。当正方向是气缸容积扩展方向时,气缸容积为真空,大气压大于气缸内气压,空气通过朝气阀门进入气缸,此时为吸气过程:当反方向是容积缩小方向时,进入气缸内的气体受到压缩,容积内的压力迅速增加,当大于大气压力时,排气阀门被打开,此时为排气过程。单轴双缸的结构布置使压缩机气体流量在额定转速一定时为单缸的两倍,并使得单缸压缩机产生的振动噪音得到很好的解决,整体结构更加紧凑。
整机工作原理:
空气由进气管进入压缩机内,电机的转动,使活塞往返运动,把空气压缩,使压力气体由出气口通过高压软管打开单向阀进入储气罐,压力表指针显示随之上升到8BAR,大于8BAR,压力开关自动关闭,电机停止工作,同时电磁阀通过泄压气管,将压缩机机头内气压减为0.此时空气开关压力、储气罐内气体压力仍为8KG,气体通过过滤调压阀、排气开关排气。储气罐内气压下降至5kg,时,压力开关自动开启,压缩机重新开始工作
⑼ 空压机工作原理
压缩气体用于制冷和气体分离:
气体经压缩、冷却、膨胀而液化,用于人工制冷(冷冻冷藏及空气调节等)如氨或氟利昂压缩机。其压缩压力多为8~12公斤/平方厘米,这一类压缩机通常成为“制冷机”或“冰机”。另外在液化的气体若为混合气时,可在分离装置中,将各组份分别地分离出来,得到合格的各种气体。
空压机的工作原理是由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的吸气、压缩和排气的全过程。
随着国民经济的飞跃发展,压缩机在工业上应用极为广泛。压缩机因其用途广泛而被称为“通用机械”。
1、 压缩空气作为动力:
风动工具排气压力为7~8公斤/平方厘米,用于控制仪表及自动化装置,压力约为6公斤/平方厘米,车辆自动,门窗启闭,压力为2~4公斤/平方厘米,制药业,酿酒业中的搅拌,压力为4公斤/平方厘米,喷气织机中的纬纱吹送压力为1~2公斤/平方厘米,中大型柴油机的启动压力为25~60公斤/平方厘米,油井的压裂,压力为150公斤/平方厘米,“二次法”采油,压力约为50 公斤/平方厘米,高压采煤压力约为800公斤/平方厘米,国防工业中的压力压缩空气为其动力。
工艺用单螺杆压缩机用来压缩除空气以外的各种气体,主要用于化工生产的工艺流程中。也用作煤气、天然气的输送等。单螺杆压缩机是冷冻(空调)机的最佳机种,在军事上如潜水艇和导弹发射等也有重要用途。
在西方发达国家,螺杆式压缩机基本上取代了活塞式,市场占有率近80%,瑞典阿特拉司公司每年约生产双螺杆压缩机1.8万台,美国I-R公司每年约产0.9万台。国内1986年螺杆式仅为2%,近年来约占30%,因此市场潜力大。如前所述:外商、台商利用技术等方面的优势抢占中国市场,销售情况良好。而国内厂家则销售欠佳。由于销售情况是商业秘密,难于收集,但从生产能力可见一斑;新成立的柳州富达机械有限公司,(中意合资)年生产能力为:双螺杆压缩机0.5万台,产值逾2亿元。全国双螺杆空气压缩机的年生产能力估计在2万台以上。2002年上海复盛公司生产螺杆压缩机产值达1.5亿元,英格索兰空压机厂产值达5亿元,随着国家经济的迅速发展,单螺杆压缩机的需求量将会日趋增大。
几点说明
单螺杆压缩机有CC、CP、PP、PC四种类型,其中以最后问世的PC型最节能,被单螺杆压缩机的发明人誉为理想冷冻(空调)机,PC型的生产技术最困难,目前只有两家公司能生产该型空气压缩机。PC型的问世淘汰了CC型。此外,如果将CP型螺杆的外形由圆柱变为圆锥,将形成一种新机型。正象PC型优于CC型一样,新机型比CP型更节能
⑽ 有没有知道如何压缩空气啊跪求。
压缩目的
压缩方法
压缩机的种类和特点
压缩目的
气体的压缩有一个基本目的,即以高于原来压力的压力传送气体。原来的压力水平可能高低不等,从非常低的绝对压力(千分之几公斤)直到几千公斤;压力从几克到几千公斤;而传输的气量从几立方米/分直到几十万立方米/分。
压缩的具体目的有各种各样:
1.在驱动风动工具的压缩空气系统中传递功率;
2.为燃烧提供空气;
3.在天然气管道和城市煤气分配系统中输送和分配气体;
4.使气体通过一个过程或系统循环;
5.制造一个对化学反应更活跃的条件;
6.出于多种目的制造和维持一个比原来高的压力水平,办法是将漏入或流入该系统的气体或原来就存在的杂气排出系统。
返回顶部
压缩方法
压缩气体的办法有4种: 2种是断续气流法,另2种是连续气流法(这是说明性的分类术语,而不是按热力学或功能分类)。这些方法要:
1.将一定量的连续气体截留于某种容器内,减小其体积从而使压力升高,然后将压缩气体推出容器。
2.将一定量的连续气体截留于某种容器内,把气体带到排气口但不改变其体积,通过排气系统的逆流来压缩气体,然后将压缩空气推出容器。
3.通过快速旋转的转子的机械运动来压缩气体。转子把速度和压力传给流动的气体(在固定的扩压器或挡板上速度进一步转化为压力)。
4.将气体送入同种或另一种气体(通常是,但不一定是蒸汽)的高速喷嘴里,并在扩压器上将混合气体的高速度转化为压力。
采用方法1和2的压缩机属于断续气流类,称为变容压缩机;采用方法3的称为速度型压缩机;采用方法4的称为喷射压缩机,其进气压力一般低于大气压力。
返回顶部
压缩机的种类和特点
压缩机的主要种类列于图1A,下面是各种压缩机的定义。凸轮式,膜片式和扩散泵等压缩机没有列入其中,是因为它们用途特殊而尺寸相对较小 。
容积式压缩机--是将一定量的连续气流限制于一个封闭的空间里,使压力升高。
往复式压缩机--是容积式压缩机,其压缩元件是一个活塞,在气缸内作往复运动。
回转式压缩机--是容积式压缩机,压缩是由旋转元件的强制运动实现的。
滑片式压缩机--是回转式变容压缩机,其轴向滑片在同圆柱缸体偏心的转子上作径向滑动。截留于滑片之间的空气被压缩后排出。
液体-活塞式压缩机--是回转容积式压缩机,在其中水或其它液体当作活塞来压缩气体,然后将气体排出。
罗茨双转子式压缩机--属回转容积式压缩机,在其中两个罗茨转子互相啮合从而将气体截住,并将其从进气口送到排气口。没有内部压缩。
螺杆压缩机--是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,从而将气体压缩并排出。
速度型压缩机--是回转式连续气流压缩机,在其中高速旋转的叶片使通过它的气体加速,从而将速度能转化为压力。这种转化部分发生在旋转叶片上,部分发生在固定的扩压器或回流器挡板上。
离心式压缩机--属速度型压缩机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速。主气流是径向的。
轴流式压缩机--属速度型压缩机,在其中气体由装有叶片的转子加速。主气流是轴向的。
混合流式压缩机--也属速度型压缩机,其转子的形状结合了离心式和轴流式两者的一些特点。
喷射式压缩机--利用高速气体或蒸汽喷射流带走吸入的气体,然后在扩压器上将混合气体的速度转化为压力。
返回顶部
压缩空气基本理论(5)
空压机的分类及其特点
用气量的确定
空压机的分类及其特点
三种基本类型的空压机包括:
往复式
回转式
离心式
以上三种类型的空压机可进一步划分为:
裸机和整机
风冷和水冷
喷油和无油
让我们简单地讨论以下这三种类型的空压机:
往复式空压机
尺寸为0.7MPa(G) --范围的0.72Kw 和0.028M3/min 到 932 Kw和176.4M3/min
往复式空压机是变容式压缩机。这种压缩机将封闭在一个密闭空间内的空气逐次压缩(缩小其体积)从而提高其气压。往复式空压机以汽缸内的一个活塞作为压缩位移的原件来完成以上的压缩过程。
当压缩过程仅靠活塞的一侧来完成时,该往复式称为单作用空压机,如果靠活塞的二头来完成时称为双作用。往复式空压机在每一个气缸上有许多弹簧式阀门,只有当阀门两侧的压差达到一定值后阀门才会打开。
当气缸内的压力略低于进气压力时,进气阀门打开,当气缸内的压力略高于排气压力时排气阀门打开。
如果压缩过程由一个汽缸或一组单级的汽缸完成时,该空压机称为单级空压机。许多实际使用工况要超过单级空压机的能力。压缩比大小(排气/进气压力)会引起排气温度过热或其他设计上的问题。
许多功率超过75Kw的往复式空压机被设计为多级机组,压缩过程由双级或多级组成,级级之间一般有冷却功能以降低进入下一级的气温。
往复式空压机有喷油和无油两种,具有压力和气量的广泛选择余地。
回转式空气压缩机
0.85M3/min -- 85M3/min回转式空压机是变容式压缩机,最普通的回转式空压机是单级喷油螺杆式空压机,这种压缩机在机腔内有两个转子,通过转子来压缩空气,内部没有阀门。这种空压机一般为油冷(冷却介质是空气或水),这种油起到了密封的作用。
由于冷却在空压机内部进行,因此部件不会有很高的温度,因此,回转式空压机是连续工作制可设计成风冷或水冷机组。
由于结构简单易损件少,回旋式螺杆空压机很容易维护,操作,并具有安装灵活的特点。回转式空压机可安装在任何能支撑重量的地面。
两级喷油回转式螺杆空压机在主机部件里带有两对转子,压缩过程由第一级和第二级串接压缩完成。两级回转式空压机具有结构简单和灵活性以及高效率的特点,两级回转式螺杆式空压机可是风冷和水冷以及全封装式。
无油回转式螺杆空压机使用特别设计的主机无需喷油就可进行压缩,从而产生无油压缩空气。无油回旋螺杆式空压机有风冷和水冷两种,并具有和喷油一样的灵活性。如你所看到的,回转式螺杆空压机有风冷、水冷、喷油、无油、单级和两级、在压力、气量、结构上有广泛的适用性。
离心式空气压缩机
11.2M3/min -- 420M3/min离心式空压机是一动力型空压机,他通过旋转的涡轮完成能量的转换,转子通过改变空气的动能和压力来实现以上的转换。由静止的扩压器降低空气的流速来实现动能向压力的变换。
离心式空压机是无油空压机,运动齿轮的润滑油由轴密封和空气隔离。
离心式是连续工况式压缩机,移动件很少,特别适用于大气量无油的要求。
离心式空压机是水冷式的,典型机组包括后冷却器和所有的控制装置。
返回顶部
用气量的确定
确定一个新厂的压缩空气要求的传统方法是将所有用气设备的用气量(m3/min)加起来,再考虑增加一个安全、泄漏和发展系数。
在一个现有工厂里,你只要作一些简单的测试便可知道压缩空气供给量是否足够。如不能,则可估算出还需增加多少。
一般工业上空气压缩机的输出压力为0.69MPa(G),而送到设备使用点的压力至少0.62MPa。这说明我们所用的典型空气压缩机有0.69MPa(G)的卸载压力和0.62MPa(G)的筒体加载压力或叫系统压力。有了这些数字(或某一系统的卸载和加载值)我们便可确定。
如果筒体压力低于名义加载点(0.62MPa(G))或没有逐渐上升到卸载压力(0.69MPa(G)),就可能需要更多的空气。当然始终要检查,确信没有大的泄漏,并且压缩机的卸载和控制系统都运行正常。
如果压缩机必须以高于0.69MPa(G)的压力工作才能提供0.62MPa(G)的系统压力,就要检查分配系统的管道尺寸也许太小,或是阻塞点对于用气量还需增加多少气量,系统漏气产生什么影响以及如何确定储气罐的尺寸以满足间歇的用气量峰值要求。
一、测试法——检查现有空气压缩机气量
定时泵气试验是一种比较容易精确的检查现有空气压缩机气量或输出的方法,这将有助于判断压缩空气的短缺不是由于机器的磨损或故障所造成的。
下面是进行定时泵气试验的程序:
A.储气罐容积,立方米
B.压缩机储气罐之间管道的容积立方米
C.(A和B)总容积,立方米
D.压缩机全载运行
E.关闭储气罐与工厂空气系统之间的气阀
F.储气罐放气,将压力降至0.48MPa(G)
G.很快关闭放气阀
H.储气罐泵气至0.69MPa(G)所需要的时间,秒
现在你已有了确定现有压缩机实际气量所需要的数据,公式是:
V(P2-P1)60
C=---------------------------
(T)PA
式中,
C=压缩机气量,m3/min
V=储气罐和管道容积,m3 (C项)
P2=最终卸载压力,MPa(A)(H项+PA)
P1=最初压力,MPa(A) (F项+PA)
PA=大气压力,MPa(A)(海平面上为0.1MPa)
T= 时间, s
如果试验数据的计算结果与你厂空气压缩机的额定气量接近,你可以较为肯定,你厂空气系统的负荷太高,从而需要增加供气量。
二、估算法
V=V现有设备用气量+V后处理设备用气量+V泄漏量+V储备量
三、确定所需的增加压缩空气
根据将系统压力提高到所需要压力的空气量,就能确定需要增加的压缩空气供气量,
P2
需要的m3/min=现有的m3/min---------
P1
式中,需要的m3/min=需要的压缩空气供气量
现有的m3/min=现有的压缩空气供气量
P2=需要的系统压力,MPa(A)
P1=现有的系统压力,MPa(A)
需增加的m3/min=需要的m3/min-现有的m3/min
结果就告诉你为满足现有的用气需求所要增加多少气量。建议增加足够的气量以便不仅满足目前的用气要求,还把将来的需求和泄漏因素考虑进去。
四、系统漏气的影响
供气量不足经常是由于或肯定是由于系统的泄漏,空气系统漏气是损失动力的一个连续根源,所以最好应当使其尽量少一些。几个相当于1/4英寸小孔的小漏点,在0.69MPa压力下可能漏掉多至2.8M3的压缩空气,这等于你损失一台18.75Kw的空气压缩机的气量,以电力每度0.4元,每年运行8000小时(三班制)计算,这些漏掉的空气使你白白损失60000元。
大多数工厂都会提供维护人员和零件来筑漏。损坏的工具。阀、填料、接头、滴管和软管应及时检查和修理。
工厂整个系统的泄漏可通过在不供气情况下测定系统压力(在储气筒体上侧)从0.69MPa(G)降到0.62MPa(G)所需要的时间来诊断。利用泵气试验我们就可以算出整个系统的泄漏量:
V(P2-P1)60
泄漏量m3/min=------------------------------
90(PA)
如漏气率超过整个系统气量的百分之五,就必须筑漏。
五、选择压缩机的规格
你一旦确定工厂用气的气量(m3/min)和压力(MPa(G))要求,便可选择空气压缩机的规格。在选择时你可能要考虑的因素包括:
目前的用气量是多少?工厂扩建后的用气量要求是多少?一般来说,用气量的年增长率为10%。是否考虑将来要用特殊的制造工艺和工具?
理想的做法是回转螺杆式压缩机和离心式压缩机所定的规格应保证在调制和调节控制范围正常工作。
单作用风冷往复式空气压缩机所确定的规格应保证在恒速控制系统的基础上有30~40%的卸载时间。
水冷往复式空气压缩机可以连续工作,但选规格时最好考虑有20~25%缓冲或卸载时间。
研究各种型号的空气压缩机性能特点以估算动力成本,从而确定哪一种是满足你厂目前和将来要求要求的最佳选择。
工厂漏气严重吗?是否要筑漏计划以便最终能减轻压缩空气系统的负荷?
你对所选空气压缩机的运行、维护、安装和性能特点感到满意吗?
在选择空气压缩机及其附加设备(如干燥机和过滤器)你是否已考虑到压缩空气的质量要求?
附加设备对你选择空气压缩机有何影响?
你是否考虑过万一主空气压缩机故障时的备用气量?
各个班次是否需要用同样气量的压缩空气?
所选用的空气压缩机在用气量较低时运转情况怎样?
可能要考虑用一台较小的空气压缩机以便节约能源,避免主空气压缩机过多的循环和磨损。
工厂是否有需加一考虑的不寻常间歇峰值要求载荷?
干燥机基础知识
干燥机是用于干燥空气的装置。用我们的术语,就是用其干燥压缩空气。离开后冷却器的空气通常是完全饱和的,就是说任何降温都会产生冷凝水。
冷冻式干燥机是通过降低压缩空气的温度,析去水分,然后将空气再加热到接近原来的温度。
再生式干燥机是使空气通过含有化学物质的过滤器以析出水分。这种装置比冷冻式装置更能吸附水气。