① 压缩试验能表征什么
测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。试样破坏时的最大压缩载荷除以试样的横截面积,称为压缩强度极限或抗压强度。压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。
② 压缩实验中压缩时为什么必须将试件对准中心位置,如没队中会产生什么影响
主要因为是杆件受力均匀,使截面各处应力大致相等,仪器对中可尽量满足条件,如果没有对中,便会导致应力不均匀容易造成不稳定破坏, 使实验破坏数据和实验破坏截面形状受影响。
试样破坏时的最大压缩载荷除以试样的横截面积,称为压缩强度极限或抗压强度。压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。
(2)脆性材料压缩试验扩展阅读:
无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。与拉伸试验相似,通过压缩试验可以作出压缩曲线。图中为灰铸铁和退火钢的压缩曲线。曲线中纵坐标P为压缩载荷,横坐标Δh为试样承受载荷时的压缩量。
如将两坐标值分别除以试样的原截面积和原高度,即可转换成压缩时的应力-应变曲线。图中Pp为比例极限载荷,P0.2为条件屈服极限载荷,P b为破坏载荷。在压缩试验中,试样端面存在较大的摩擦力,影响试验结果。
试样越短影响越大,为减少摩擦力的影响,一般规定试样的长度与直径的比为1~3,同时降低试样的表面粗糙度,涂以润滑油脂或垫上一层薄的聚四氟乙烯等材料。
③ 为什么说压缩试验是有条件性的
压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。对于塑性材料,无法测出压缩强度极限,因为塑性材料难以压断
④ 在材料的压缩实验中,塑性材料和脆性材料在压缩过程中的σ-ε曲线分别有何特点
塑性材料的延展性、塑性、韧性好,所以对拉伸非常有利。像低碳钢、铜、铝等材料的塑性、韧性、延展性,都非常好,所以,现在一般的需要拉伸的产品,都选择这一类的材料来拉伸的产品。而脆性材料,由于塑性、延展性、韧性都不好,如果用于拉伸产品的加工,很容易就会造成拉伸产品的断裂。所以,脆性材料一般不用于拉伸产品的加工;而把脆性材料用于一般的冲压产品。
⑤ 起始位置对压缩实验的意义是什么
起始位置对压缩实验的意义是:试件放好后试件上表面与上压头没有空隙时上下压缩平台的间距。
压缩试验是测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。
力学性能:
1、脆性脆性是指材料在损坏之前没有发生塑性变形的一种特性。它与韧性和塑性相反。脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。铸铁、陶瓷、混凝土及石头都是脆性材料。与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。
2、强度:金属材料在静载荷作用下抵抗永久变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。
⑥ 材料力学拉伸与压缩实验可以得到什么结论
利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗产生弹性变形、塑性变形和断裂的能力。材料在承受拉伸载荷时,当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。产生屈服时的应力,称屈服点或称物理屈服强度,用σS(帕)表示。工程上有许多材料没有明显的屈服点,通常把材料产生的残余塑性变形为 0.2%时的应力值作为屈服强度,称条件屈服极限或条件屈服强度,用σ0.2 表示。材料在断裂前所达到的最大应力值,称抗拉强度或强度极限,用σb(帕)表示。
测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。试样破坏时的最大压缩载荷除以试样的横截面积,称为压缩强度极限或抗压强度。压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。与拉伸试验相似,通过压缩试验可以作出压缩曲线。图中为灰铸铁和退火钢的压缩曲线。曲线中纵坐标P为压缩载荷,横坐标Δh为试样承受载荷时的压缩量。如将两坐标值分别除以试样的原截面积和原高度,即可转换成压缩时的应力-应变曲线。图中Pp为比例极限载荷,P0.2为条件屈服极限载荷,P b为破坏载荷。在压缩试验中,试样端面存在较大的摩擦力,影响试验结果。试样越短影响越大,为减少摩擦力的影响,一般规定试样的长度与直径的比为1~3,同时降低试样的表面粗糙度,涂以润滑油脂或垫上一层薄的聚四氟乙烯等材料
如果满意,请采纳!
您的采纳使我继续努力的动力!