❶ r语言 如何查看有哪些package
search() #查环境的,里面就包含了你加载了哪些package
❷ R语言library(psych)什么意思
导入函数包psych
library()这个函数是把括号内包含的函数包导入,然后才可以运用psych中的一些现成的函数or模型。
psych函数包好像是一个和心理学等有关的函数包,Rstudio里给的psych函数包的定义如下:
A general purpose toolbox for personality, psychometric theory and experimental psychology. Functions are primarily for multivariate analysis and scale construction using factor analysis, principal component analysis, cluster analysis and reliability analysis, although others provide basic descriptive statistics. Item Response Theory is done using factor analysis of tetrachoric and polychoric correlations. Functions for analyzing data at multiple levels include within and between group statistics, including correlations and factor analysis. Functions for simulating and testing particular item and test structures are included. Several functions serve as a useful front end for structural equation modeling. Graphical displays of path diagrams, factor analysis and structural equation models are created using basic graphics. Some of the functions are written to support a book on psychometric theory as well as publications in personality research. For more information, see the <https://personality-project.org/r> web page.
上述英文来自:网页链接
❸ r语言怎么查看富集分析的数据
r语言怎么查看富集分析的数据
1.首先利用r语言的install中的packages方法,输入参数【xlsx】即可。
2.此时利用library(xlsx)语句,打开xlsx这个库。
3.此时通过read的xlsx语法就能读取某个文件夹下的Excel文件。
4.这个时候,我们按下回车,就能看到通过r语言读取excel的一批数据。
❹ R语言的R包及其使用
1、通过选择菜单:
程序包->安装程序包->在弹出的对话框中,选择你要安装的包,然后确定。
2、使用命令
install.packages(package_name,dir)
package_name:是指定要安装的包名,请注意大小写。
dir:包安装的路径。默认情况下是安装在..library 文件夹中的。可以通过本参数来进行修改,来选择安装的文件夹。
3、本地来安装
如果你已经下载的相应的包的压缩文件,则可以在本地来进行安装。请注意在windows、unix、macOS操作系统下安装文件的后缀名是不一样的:
1)linux环境编译运行:tar.gz文件
2)windows 环境编译运行 :.zip文件
3)MacOSg环境编译运行:.tgz文件
注:包安装好后,并不可以直接使用,如果在使用包中相关的函数,必须每次使用前包加载到内存中。通过library(package_name)来完成。 包安装后,如果要使用包的功能。必须先把包加载到内存中(默认情况下,R启动后默认加载基本包),加载包命令:
Library(“包名”)
Require(“包名”) 1、查看包帮忙
library(help=package_name)
主要内容包括:例如:包名、作者、版本、更新时间、功能描述、开源协议、存储位置、主要的函数
help(package = package_name)
主要内容包括:包的内置所有函数,是更为详细的帮助文档
2、查看当前环境哪些包加载
find.package() 或者 .path.package()
3、移除包出内存
detach()
4、把其它包的数据加载到内存中
data(dsname, package=package_name)
5、查看这个包里的包有数据
data( package=package_name)
6、列出所有安装的包
library()
❺ R语言怎么获取当前文件所在文件夹
R语言读取文件都是在工作空间里,或者给定的文件地址让他去读
##getwd()获取当前工作目录
##setwd()设置工作目录
❻ R语言-v1-基础知识
R语言-v1-基础知识
Iretara 12-17 21:18
以例题的形式简述R语言基础知识
# 读取文件
setwd(" 文件链接的时候,用 / ")
install.packages(" readxl ")
library(readxl)
library (tidyverse)
hw1_a<- read_excel ("hw1_a.xlsx", col_types=c("numeric", "numeric", "numeric", "numeric", "numeric") )
hw1_b<- read_excel ("hw1_b.xlsx")
#读取csv
library(readr)
hw1_a<- read_csv ("/")
View(hw1_a)
# 描述型函数
hw1_a + hw1_b 表
#描述最小值,最大值,中值,均值,标准差
Str (hw1_a) #查看数据并指出各个 变量的形式
summary (hw1_a) #指出各个变量的形式, 最小值,最大值,中值,均值
library(psych)
describe (hw1_a) #比summary更简便的方法, 可以直接读取标准差等;但是,使用describe不可读取 NA值, 可以尝试使用 Hmisc包中 describe
描述型函数-R
# 连接
hw1_a %>% inner_join (hw1_b, by ="ID")
hw1_a %>% left_join (hw1_b, by ="ID")
hw1_a %>% right_join (hw1_b, by ="ID")
hw1_a %>% full_join (hw1_b, by ="ID")
inner_join<- inner_join (hw1_a,hw1_b, by =“ID”) #报告合并后的 总行数 ,178行
full_join<- full_join (hw1_a,hw1_b, by ="ID")
( nrow (full_join)) #报告合并后的 总行数 ,200行
> length (full_join$ID)
#找出各个列的 缺失值
i<-NA
a<-NA
for(i in 1:length(full_join[1,])){ a[i]<- sum(is.na( full_join[,i] ) ) }
paste("缺失值是",a)
#缺失值总数
sum(is.na(full_join))
#删除缺失值 na.omit()
full_join1=filter(full_join,!is.na(full_join[2]))
full_join1=filter(full_join1,!is.na(full_join1[3]))
full_join1=filter(full_join1,!is.na(full_join1[4]))
full_join1=filter(full_join1,!is.na(full_join1[5]))
full_join1=filter(full_join1,!is.na(full_join1[6]))
full_join1=filter(full_join1,!is.na(full_join1[7]))
full_join1=filter(full_join1,!is.na(full_join1[8]))
sum(is.na(full_join1))
找出Income中的 极端值 并滤掉对应行的数据
quantile (hw1_a$Income,c(0.025,0.975))
hw1_a2= filter (hw1_a,Income>14168.81 & Income<173030.92)
#使用dplyr进行数据转换
arrange()
> arrange (hw1_a,Income) #默认升序
>arrange(hw1_a, desc (Income)) #desc降序,NA排序一般最后
select()
> select (hw1_a, - (Years_at_Address:Income)) #不要变量
> rename (hw1_a, In_come=Income) #改名
>select(hw1_a,Income, exerything ()) #把Income放在前面
拓例题1:
library(nycflights13)
view(flights)
#counts
(1)
not_cancelled <- flights %>%
filter(! is.na(dep_delay), !is.na(arr_delay))
(2)
not_cancelled %>%
group_by (year,month,day) %>%
summarize (mean=mean(dep_delay))
(3)
delays <- not_cancelled %>%
group_by (tailnum) %>%
summarize (delay=mean(arr_delay))
ggplot (data=delays,mapping=aes(x= delay))+
geom_freqpoly (binwidth=10) #freqpoly
(4)
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarize(delay=mean(arr_delay,na.rm=TRUE), n=n() ) #tailnum的次数
ggplot(data=delays,mapping=aes(x= n, y=delay))+
geom_point(alpha=1/10)
拓例题2:
#请按照价格的均值,产生新的变量price_new, 低于均值为“低价格”,高于均值为“高价格”。 同样对市场份额也是,产生变量marketshare_new, 数值为“低市场份额”和“高市场份额”
price=data1$price
pricebar=mean(price)
price_new= ifelse (price>pricebar,“高价格”,”低价格”)
marketshare=data1$marketshare
marketsharebar=mean(marketshare)
marketshare_new=ifelse(marketshare>marketsharebar ,“高市场份额”,”低市场份额”)
data1= mutate (data1,price_new,marketshare_new)
#可视化
#将Income 对数化
lninc<- log (hw1_a$Income)
#画出直方图和 density curve密度曲线
hist (lninc,prob=T)
lines ( density (lninc),col="blue")
# 添加额外变量 的办法,在 aes()中添加 样式 (color、size、alpha、shape)
ggplot(data=inner_join)+
geom_point(mapping = aes(x=Years_at_Employer,y= Income, alpha= Is_Default))
# 按照Is_Default 增加一个维度,使用明暗程度作为区分方式
ggplot(data=inner_join)+
geom_point(mapping = aes(x=Years_at_Employer,y= Income,
alpha=factor( Is_Default ) ))
#使用形状作为另外一种区分方式
ggplot(data=inner_join)+
geom_point(mapping = aes(x=Years_at_Employer,y= Income,
shape=factor( Is_Default)))
可视化-R
拓展:
#将 flight1 表和 weather1 表根据共同变量进行内连接,随机抽取 100000 行数据, 将生产的结果保存为 flight_weather。 (提示:sample_n()函数,不用重复抽取)
flight_weather <- inner_join(flight1, weather1) %>% sample_n(100000)
# 从 flight_weather表中对三个出发机场按照平均出发延误时间排降序,并将结果保留在 longest_delay表中。把结果展示出来
longest_delay<- flight_weather %>%
group_by(origin) %>%
summarize(delay=mean(dep_delay, na.rm=TRUE )) %>%
arrange(desc(delay))
#根据不同出发地(origin)在平行的 3 个图中画出风速 wind_speed(x 轴)和出发 延误时间 dep_delay(y 轴)的散点图。
ggplot(data= flight_weather) +
geom_point(mapping=aes(x=wind_speed,y=dep_delay))+
facet_grid(.~origin, nrow = 3 ) # 按照class分类,分成3行
#根据 flight_weather 表,画出每个月航班数的直方分布图,x 轴为月份,y 轴是每个 月份航班数所占的比例。
ggplot(data=flight_weather)+
geom_bar(mapping=aes(x=month, y=..prop .., group=1))
#根据 flight_weather 表,画出每个月航班距离的 boxplot 图,x 轴为月份,y 轴为 航行距离, 根据的航行距离的中位数从低到高对 x 轴的月份进行重新排序
ggplot(data=flight_weather)+
geom_boxplot(mapping=aes(x= reorder (month,distance,FUN=median),y=distance))
线性回归
# 以Income作为因变量,Years at Employer作为自变量,进行 OLS回归
m1<- lm (Income ~ Years_at_Employer,data=hw1_a)
#通过***判断显着性
summary (m1)
#画出拟合直线
ggplot(data= hw1_a)+
geom_point(aes(x=Income,y=Years_at_Employer))+
geom_abline(data= m1,col= "blue")
#证明拟合直线是最优的
b0=runif(20000,-5,5)
b1=runif(20000,-5,5)
d<-NA
sum<-NA
n<-1
while(n<=20000){
for(i in 1:24){
d[i]<-(hw1_a $ Income[i]-b0[n]-b1[n]*hw2$ Years_at_Employer[i])^2}
sum[n]<-sum(d)
n<-n+1
}
resi=m1$resials
resi2=sum(resi^2)
check=sum(as.numeric(sum<resi2))
check
❼ 怎么设置r语言中library的路径
sapply函数和Lapply函数类似,也是对List进行处理,只是在返回结果上,sapply会根据结果的数据类型和结构,重新构建一个合理的数据类型返回。调用格式如下: sapply(数据,运算函数,函数的参数,simplify = TRUE, USE.NAMES = TRUE) > sapply
❽ macr语言的包是装在哪个目录下
得看什么软件了,像一般的应用程序,都在./Applications/,格式是*****.app。(./ 根目录)
如果是系统偏好设置之类的,在./Library/PreferencePanes/下面。
如果是Dashboard软件,在./Library/Widgets/下面。
如果是屏保程序,在./Library/Screen Savers/下面。
其他如flash player插件,在./Library/Internet Plug-Ins/下面。
以上没有,推荐一个软件EasyFind搜索,或者打开该应用,右键--选项--在Finder中显示。
❾ r语言如何看到values中的数据
1、数据的获取
1.1从excel中读取数据
需要加载包,通常有两种包
library(readxl)
library(readxl) # 读取数据,返回值是data.frame() mydata <- read_xlsx("D:/test/testdata.xlsx",sheet = 1) print(mydata$ID) class(mydata)
library(openxlsx)
library(openxlsx) mydata <- read.xlsx("D:/test/testdata.xlsx",sheet = 1)
1.2从CSV文件中获取
什么是CSV文件 ?:Comma-Separated Values,中文叫,逗号分隔值或者字符分割值,其文件 以纯文本的形式存储表格数据 。该文件是一个字符序列,可以由任意数目的记录组成,记录间以某种换行符分割。每条记录由字段组成,字段间的分隔符是其他字符或者字符串。所有的记录都有完全相同的字段序列,相当于一个结构化表的纯文本形式。
个人更加偏好csv格式的文件。
用文本文件、excel等软件都可以打开CSV文件。
读取csv中的数据
❿ R语言install.packages()和library()函数
1. 联网,在线安装:
install.packages('package_name') //直接填写包的名字即可
2. 本地安装:
install.packages('path_to_packages') //需要填写第三方包的本地路径
1. library(my_package)
2. library(my_package, character.only=True)
第二种加载方式与第一种不同的地方在于,它只接受字符串值,它可以接受一个字符串变量;但是第一种不能识别字符串变量,它会直接加载'my_package'。
举个例子,如下:
library(randomForest) //直接加载randomForest
library('randomForest') //与上面效果相同,直接加载randomForest
p<-'randomForest'
library(p) //不接受字符串变量,报错
library(p,character.only=T) //正常加载randomForest