⑴ 数码涡旋压缩机是怎样实现能量调节的
数码涡旋压缩机的变容量是利用轴向“柔性”密封技术将定涡旋盘轴活动范围精密调整,并在压缩机吸气口增设一连通管,与定子轴向浮动密封处的中间压力室相通,当电磁阀打开时,中间压力室内压力释放,压缩腔内压力大于定子上端面压力,压缩定子轴向上移动,形成一间隙,实现卸载。当电磁阀关闭时,排气压力及中间压力又将定子下压,使定子轴向密封,实现上载。
数码涡旋式压缩机在电磁阀控制电源的作用下,可自由地调节开启/关闭的比例,实现“0~1”输出。变动负载时间可达“无级调节”,能量调节范围为10%~100%。
⑵ 请问谷轮涡旋式压缩机的工作原理是什么
涡旋压缩机工作原理是由两个双函数方程型线的动、静涡盘相互啮合而成。在吸气、压缩、排气工作过程中,静盘固定在机架上,动盘由偏心轴驱动并由防自转机构制约,围绕静盘基圆中心,作很小半径的平面转动。
气体通过空气滤芯吸入静盘的外围,随着偏心轴旋转,气体在动静盘噬合所组合的若干个月牙形压缩腔内被逐步压缩,然后由静盘中心部件的轴向孔连续排出。
⑶ 美的数码涡旋中央空调的工作原理MDV-D220W/S-810为什么制冷它里面只有一个压缩机在转呢他里面是有两个压
开启的内机的制冷量小于一个压机的输出冷量,所以只有一个转,大于的话,两个都转
⑷ 压缩机工作原理是什么啊
压缩机工作原理是工作轮在压缩机的轴上旋转,进入工作轮的气体被叶片带着旋转,增加了动能(速度)和静压头(压力),然后出工作轮进入扩压器内,在扩压器中气体的速度转变为压力,进一步提高压力,经过压缩的气体再经弯道和回流器进入下一级叶轮进一步压缩至所需的压力。
由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的上部分内表面恰好与叶轮轮毂相切,水环的下部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。
此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成叶片数目相等的若干个小腔。如果以叶轮的上部0°为起点,那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通。
此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。
(4)数码涡旋压缩机工作原理扩展阅读
运转过程中,检查下列项目:
1、润滑油的压力、温度和供油情况。油压在送入分配管系之前不得低于1公斤/厘米2。曲轴箱或机身内润滑油油湿应为:有十字头的压缩机不得超过60℃。无十字头的不得超过70℃。
2、压缩机运转平稳,各运动部件声音应正常。
3、测量进、出口水温和检查冷却水供应情况,冷却水不允许断续地流和有气泡及堵塞等现象。冷却水排水温度不得超过40℃。
4、各连接法兰部分,轴封,进、排气阀、气缸盖和水套等,不得漏气、漏油、漏水。
5、进、排气阀的工作应正常,安全伐灵敏。
6、各连接部分不得有松动现象。
7、测量各级排气温度和压力数值应符合各技术条件的规定。
8、电动机发热情况及电流值应符合规定。
⑸ 涡旋式压缩机原理是什么
原理是:动涡旋盘和固定涡旋盘在安装时存在180°的相位角,从而使两涡旋盘相互啮合形成一系列的月牙形容积。动涡旋盘由一个偏心距很小的曲轴带动,使之绕静涡旋盘的轴线转动。此外在动涡旋盘背后利用一联接机构,用来保证动涡旋盘和静涡旋盘之间的相对平动。在此平动过程中,制冷剂蒸气由涡旋盘的外边缘吸人到月牙形工作容积中,工作容积逐渐向中心移动并减小,使制冷剂蒸气被压缩,当气体压力高于排气阀外的压力时,排气阀打开。最后经中心部位的排气口轴向排出,从而完成吸气、压缩和排气的整个周期。
⑹ 数码涡旋压缩机为什么有好多管子
数码涡旋压缩机有好多管子是因为工作原理需要而安装的。压缩机这两种状态的转换是通过安装在压缩机上的电磁阀来控制。活塞安装于顶部固定涡旋盘处,活塞的顶部有一调节室,通过0.6mm直径的排气孔和排气压力相连通,而外接PWM电磁阀连接调节室和吸气压力。电磁阀处于常闭位置时,活塞上下侧的压力为排气压力,一弹簧力确保两个涡旋盘共同加载。电磁阀通电时,调节室内的排气被释放至低压吸气管,导致活塞上移,带动了顶部的涡旋盘上移,该动作使两涡旋盘分隔,导致无制冷剂通过涡旋盘。当外接电磁阀断电时,压缩机再次满载,恢复压缩操作。
⑺ 涡旋制冷压缩机的工作原理
压缩机工作原理
涡旋压缩机工作原理:
涡旋式空气压缩机是由函数方和型线的动、静涡旋相互齿合而成。在吸气、压缩、排气工作过程中,静涡旋盘固定在机架上,动盘由偏心轴驱动并由防自动机构制约,围绕静盘基圆中心,作很小半径的平面转动,气体通过空气过滤芯吸入静盘的外围,随着偏心轴旋转,气体在动静盘齿合所组成的若干对月牙形压缩腔内被逐步压缩然后由静盘部位的轴向孔连续排出。
涡旋式制冷压缩机特点 :
1.相邻两室的压差小,气体的泄漏量少。
2.由于吸气、压缩、排气过程是同时连续地进行,压力上升速度较慢,因此转矩变化幅度小、振动小。
3.没有余隙容积,故不存在引起输气系数下降的膨胀过程。
4.无吸、排气阀,效率高,可靠性高,噪声低。
5.由于采用气体支承机构,故允许带液压缩,一旦压缩腔内压力过高,可使动盘与静盘端面脱离,压力立即得到释放。
6.机壳内腔为排气室,减少了吸气预热,提高了压缩机的输气系数。
7.涡线体型线加工精度非常高,必须采用专用的精密加工设备。
8.密封要求高,密封机构复杂。
涡旋压缩机在主轴旋转一周的时间内,仅有的进气、压缩、排气三个工作过程是同时进行的,外侧空间与吸气口相通,始终处于吸气过程,内侧空间与排气口相通,始终处于排气过程。
⑻ 涡旋压缩机的工作原理是怎样的
涡旋压缩机是一种容积型压缩机,其结构如图5-14所示。它的工作室由转子和定子两个涡旋体啮合而成。利用涡旋转子与涡旋定子的啮合,形成多个压缩室。随着转子的平移转动,各压缩室内容积不断发生变化,实现吸入与压缩气体。
图5-14 涡旋压缩机结构
1.曲轴 1.十字连接环 3.排气管 4.吸气腔 5.吸气管 6.排气口 7.涡旋定子 8.涡旋转子 9.电动机定子
在涡旋压缩机中,由于无余隙容积,因而没有气体的膨胀过程,有效地提高了容积效率。同时,吸气和压缩排气过程在多个涡旋小室中进行,有效地实现了平稳输气,减少了输气的脉动损失。其热力过程的流动损失也比往复式和滚动转子压缩机要少得多。
⑼ 涡旋式压缩机的工作原理及工作过程
涡旋式压缩机呢,在工作过程中就是压缩空气进行工作的,开始的时候,给压缩机的一个初动能,当初动能使压缩头往里面压缩空气时,压缩头的机械能转化为空气的内能,当把空气压缩到一定的程度时,气体的内能又转化为压缩头的机械能,从而使压缩头又往回运动,这样,就开始了往返的来回运动,这就是其原理和过程。智云~~制冷希望可以帮到你
⑽ 什么是数码涡旋
数码涡旋技术
该技术的长处在于其固有的简易性。常规的谷轮涡旋技术有一独特的性能称为“轴向柔性”。这一性能使固定的涡旋盘沿轴向可以有很少量的移动,确保用最佳力使固定涡旋盘和动涡旋盘始终共同加载。在各操作条件下将这两个涡旋盘集合在一起的这一最佳力确保了谷轮涡旋技术的高效率。数码涡旋运行基于这一原理。借助图1可说明数码涡旋技术的机械硬件。
一活塞安装于顶部固定涡旋盘处,确保活塞上移时顶部涡旋盘也上移。在活塞的顶部有一调节室,通过0.6mm直径的排气孔和排气压力相连通。一外接电磁阀连接调节室和吸气压力。电磁阀处于常闭位置时,活塞上下侧的压力为排气压力,一弹簧力确保两个涡旋盘共同加载。电磁阀通电时,调节室内的排气被释放至低压吸气管。这导致活塞上移,顶部涡旋盘也随之上移。该动作分隔开两涡旋盘,导致无制冷剂质流量通过涡旋盘。外接电磁阀断电再次使压缩机满载,恢复压缩操作。应指出的是:顶部涡旋盘的可移动的幅度很小——仅1.0mm,因而从高端释放至低端的高压气体的量也较小。
数码涡旋操作分两个阶段——“负载状态”,此时电磁阀常闭;“卸载状态”,此时电磁阀打开。负载状态中,压缩机象常规涡旋压缩机一样工作,传递全部容量和制冷剂质流量。然而,卸载状态中,无容量和制冷剂质流量通过压缩机。数码涡旋的两个状态如图2中所示。
在此阶段,让我们介绍一下“周期时间”的概念。一个周期时间包括“负载状态”时间和“卸载状态”时间。这两个时间阶段的组合决定压缩机的容量调节。例如:在20秒周期时间内,若负载状态时间为10秒,卸载状态时间为10秒,压缩机调节量为(10秒×100%+10秒×0%)/20=50%(图3)。若在相同的周期时间内负载状态时间为15秒而卸载状态时间为5秒,则压缩机调节量为75%。容量为负载状态和卸载状态时间平均的总和。通过改变负载状态时间和卸载状态时间,可用压缩机产生任何容量(10%~100%)。
压力轨迹
由于涡旋盘的加载和卸载,任何周期内吸气和排气压力会发生波动。负载状态中,吸气压力开始下降而排气压力开始增大。在卸载周期内,吸气压力开始增大而排气压力开始下降(图4)。图4显示12秒周期时间和50%调节量,即6秒负载和6秒卸载时的吸气和排气压力。为保持制冷剂质流量和至蒸发器的液流,经试验确定在系统中安装储液筒是有效的。例如:推荐选用一个5升储液筒用于6HP装置。压力的这一波动对铜管、阀等系统各部件的可靠性无影响。
功率消耗
负载状态中压缩机消耗全部负载功率。但在卸载状态中,电机运行功耗很小,约为满载功率的10%。功耗的波动对测量是一个挑战。理想的功率测量仪表是一段时间内的总功率可累积的仪表。卸载状态中的这一低功耗确保了数码涡旋技术的高效率。
周期时间
周期时间是数码涡旋运行中的一个重要参数。可用不同的周期时间获得相同的容量。例如:用7.5秒负载时间和7.5秒卸载时间组合得到50%容量。同样,也可用15秒负载时间和15秒卸载时间组合得到50%容量(图3)。谷轮公司已根据经验为各容量调节确定了理想的周期时间。“周期时间”和“容量调节比例”成反比,容量调节比例越低,周期时间应越长(图5)。在各理想的周期时间内系统能量效率最大。
图4:排放和抽吸压力轨迹
数码涡旋的性能
容量范围广
10%—100%的容量范围是数码涡旋无与伦比的输出特性。这一大范围的容量输出是连续的和无级的。与变频器技术相比是一个提高,因为用变频器技术只能分步达到容量输出。无级传送容量也确保对室内空气温度的极严格的控制。大范围的容量输出也有利于提高系统的季节能效比。压缩机的“启动-停机过程”消耗了更多的能量。数码涡旋大范围的容量输出减少了“启动-停机”的次数。
季节能效比高
对多联机系统而言,测量单点效率不是测量系统效率的正确方法。必须计算出季节能效比(SEER),以便全面了解全年运行系统中节省的能量。按照JIS和ARI标准对数码涡旋性能进行的鉴定表明了其出色的SEER。对并联排列的配置——一个数码涡旋压缩机和一个固定速度压缩机并联排列,SEER的优点更大。两台压缩机在满载容量下操作时,装置的EER(能效比)较高;在50%容量下,仅一台压缩机满载操作时,装置运行的EER也较高。
回油
回油是多蒸发器变转速压缩机系统的一个主要问题。现代技术用油分离器和/或复杂的回油循环以确保某一阶段操作后的回油。数码涡旋压缩机是一种独特的压缩机,它无需油分离器或回油循环。有两个因素使回油容易。第一,油只在负载周期内离开压缩机。所以,在低容量情况下,离开压缩机的油极少。第二,如前所述,压缩机在负载周期内满负荷运行,负载周期内的气体速度足以使油回至压缩机。我们的试验已证明油能在最差的运行条件下回至压缩机,即低负荷状态,100米管长和30米高度落差(带标准油弯),包括室内外机的正落差和反向落差。
除湿
必须保证除湿功能以确保用户舒适性,在多联机系统部分负荷运行中尤为重要。在变频型多联机系统内,压缩机以较低频率运行。这减少制冷剂的质量流量并导致较高的吸气压力和较高的显热因子(SHF)。数码涡旋压缩机运行时的吸气压力比变频系统低,因而除湿性能良好。如前所述,在任何调节输出期间,压缩机在周期的负载部分满容量运行,该满容量运行导致较低的平均吸气压力并进而导致较低的SHF。
电磁干扰
电磁干扰是变频器驱动系统的一个主要问题。在许多国家,尤其在欧洲,对任何系统可能散发的电磁干扰量有严格的限制。由于数码涡旋压缩机的加载和卸载是机械操作,数码涡旋系统产生的电磁干扰可忽略不计。这一独特的特性,不仅使数码系统无需昂贵的电磁抑制电子装置,也增加了其可靠性和简易性。
快速降温
快速降低室温并快速调节至所需温度对用户的舒适性是重要的。由于数码涡旋系统可通过改变负载和卸载周期时间迅速将容量从100%转换至10%(反之亦然),它能比变频器系统快得多地对系统需求的变化作出反应,无需象变频器系统那样通过中间频率的转换。
可靠性
压缩机系统和电子装置的可靠性是开发亚洲市场中的一个问题。在变频器系统内,电子装置一般很复杂。鉴于安装的不确定性和天气变化的极端性,复杂的电子装置会引起可靠性的问题。如果采用各种旁通装置,如热气旁通管和液体旁通管,可能使情况变得更为复杂。我们马上就要简要地讨论这些旁通管线问题,但实际情况是复杂的系统发生故障的可能性更大。数码涡旋系统基本上是简易系统。图6显示的是用于室外机控制板的典型的电子装置。
制冷剂旁通
大多数现行技术选用热气旁通和液体旁通装置。因压缩机不能达到极低容量,所以需要这些旁通管保护装置。数码涡旋系统能使容量低至10%,所以无需这些旁通管,因而节省了开支,并使系统简易化。
紧凑性
较小的占地空间导致材料费、包装、保管和装运费的降低。数码涡旋系统因其简易性而能设计得更为紧凑,与采用现行技术的系统相比,它可节省30%空间。
应用灵活性
数码涡旋压缩机可用于各种用途——单个蒸发器或多个蒸发器。一个6马力数码涡旋压缩机可被用作标准部件以获得较高容量——并联排列配置。一个6马力固定速度涡旋压缩机可和一个6马力数码涡旋压缩机前后排列,可用以达到12马力的并联容量。可以此概念极大提高商用市场的容量。特别是由于回油的敏感性问题,设计较大容量的模块式系统已成为对变频技术具有挑战性的任务。可使用数码涡旋装置简易地构成模块式系统。
其它的制冷剂
目前数码涡旋系统应用于R22和R407C。谷轮公司正在R410A上开发此技术,因为我们相信R410A将成为住宅和小型商用空调市场未来选用的制冷剂。R410A有诸多优点——系统能量效率高,更好的TEWI指数,因热转换系数高而使除湿性能好,热泵加热性能好,无分馏或温度滑移问题,通过使用较小的铜管和较少制冷剂而使系统成本最佳化。
数码涡旋技术的未来发展
数码涡旋技术可扩展至数码涡旋EVI(增强喷汽增焓)技术的应用。基本的喷汽增焓周期概念为:通过增强过冷(较高△H)而不是加大排气量(较高的制冷剂质流量)提高蒸发器容量。该概念类似于过冷器的一个双级周期,但级间蒸汽被注入回同一个压缩机。对涡旋盘而言,很容易在“分级”压缩过程中注入蒸汽。喷汽增焓有几个优点——在相同容量下比加大排量的效率高(因为是通过中间压力而不是吸气压力增加喷汽增焓功率的),比使用被动式液体热交换器有较好增益(图6和图7)。对HFC如R410A而言,有更为有利的性能增益(表1)。
总结
容量调节系统在市场上的需求正快速增长,数码涡旋系统是这方面应用中一个极好的选择。数码涡旋系统有许多独特的优点——准确满足需求的输出容量,较好的低容量湿度控制,较大的容量范围,即使管线较长也易回油,易于使用。系统部件较少,无电磁干扰问题,因而装置结构简单。