⑴ 材料力学中拉伸杆与压缩杆组合实验中影响实验结果的准确性的主要因素是
材料力学中拉伸杆与压缩杆组合实验中影响实验结果的准确性的主要因素是取样以及试样制备。
1.取样部位的影响
从金属材料的不同位置取样获得的实验样本,其力学性能往往存在一些差异,例如圆钢40mm其中心处的抗拉强度低于1/4处的抗拉强度,且断后拉伸率也存在差别,可见取样部位对实验结果有着不可忽视的影响。由于金属材料在铸造形成、加工过程中,成分、内部组织结构、冶金缺陷、加工变形分布不均,因此使得同一批,甚至同一产品的不同部位的力学性能出现了差异。因此在取样时应严格按标准进行,以避免实验结果出现偏差造成误判。
2.取样方向的影响
取样方向的差异会直接影响金属材料拉伸试验的断后伸长率、屈服强度以及抗拉强度等各项性能指标,尤其是断后伸长率受到的影响更大。若采取横向取样,则依照有关标准,试验之后的断后伸长率则不能够达标。通常垂直于轧制方向,则金属力学性能则可能不达标;平行于轧制方向,则金属力学性能良好。
3.试样的形状、尺寸的影响
同一材料同一状态的金属材料,如果截面形状不同,测得的结果对屈服强度中的上屈服强度ReH影响大,对下屈服强度ReH影响小。矩形试样的工作长度部分的对称度,圆形试件的工作部分轴线与夹头部分的轴线不同心,都会在拉伸时产生偏心力,产生附加弯曲应力,使强度和伸长率均降低。
试样的尺寸的大小对试验结果的影响是,同一材料同一状态的金属材料试样,大横截面积(大尺寸)的试样的抗拉强度较小尺寸的低,而且塑性指标也下降。
4.试样制备方法的影响
切取样坯时必须防止因受热、加工硬化及变形而影响其力学性能。切取样坯时应留有足够的机加工余量,一般应不少于钢材直径和厚度,但最小不少于20mm,这样机加工试样时,可以把受热或冷加工硬化的部分完全去除掉,以免影响性能的测定。从样坯机加工成试样,一般通过车、铣、刨、磨等机加工,但车削、切削和磨削的深度和走刀速度及润滑冷却均应适当,以防止发生因受热或冷加工硬化而影响材料的性能。
⑵ 材料力学拉伸与压缩实验实验时,加载的速度为什么必须均匀缓慢
尽量减少冲击造成的误差。
⑶ 拉伸压缩的试验原理是
原理:利用拉伸试验机产生的静拉力(或静压力),对标准试样进行轴向拉伸(或压缩),同时连续测量变化的载荷和试样的伸长量,直至断裂(或破裂),并根据测得的数据计算出有关的力学性能指标。
拓展介绍:
工程结构构件的基本变形形式之一。对于受拉伸或压缩的等截面直杆(棱柱形杆),根据杆受力时横截面保持为平面的假设,则横截面上无剪应力τ,而其正应力σ为均匀分布,其值等于轴力N 除以横截面面积A,即σ=N/A;当材料在线弹性范围内工作时,根据胡克定律(见材料力学),杆内一点处的轴向(纵向)线应变为ε=σ/E(E为材料的拉、压弹性模量);在轴力N 为常量的长度L范围内,绝对线变形ΔL的计算公式为ΔL=NL/EA。
⑷ 材料力学,为什么铸铁式样在压缩时断裂截面与轴线夹角明显大于45度
你这个图片看起来差不多就是45度。
建议用量尺量一下。
如果真的明显大于45度,可能原因如下:
1.试样有裂纹,空穴,等缺陷
2.试样上下端面不平行,端面与轴线不垂直。
⑸ 在材料力学压缩实验中,低碳钢为什么没有强度极限
因为低碳钢为塑性材料,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。
这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。
低碳钢拉伸试验中应力应变可分为四个阶段分别是弹性阶段、屈服阶段、强化阶段、颈缩阶段,试件在拉断前,于薄弱处截面显着缩小,产生“颈缩现象”,直至断裂。
(5)材料力学实验报告压缩实验扩展阅读:
低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。
当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低,这种现象称为淬火时效。低碳钢即使不淬火而空冷也会产生时效。
低碳钢经形变产生大量位错,铁素体中的碳、氮原子与位错发生弹性交互作用,碳、氮原子聚集在位错线周围。
⑹ 材料力学拉伸与压缩实验可以得到什么结论
利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗产生弹性变形、塑性变形和断裂的能力。材料在承受拉伸载荷时,当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。产生屈服时的应力,称屈服点或称物理屈服强度,用σS(帕)表示。工程上有许多材料没有明显的屈服点,通常把材料产生的残余塑性变形为 0.2%时的应力值作为屈服强度,称条件屈服极限或条件屈服强度,用σ0.2 表示。材料在断裂前所达到的最大应力值,称抗拉强度或强度极限,用σb(帕)表示。
测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。试样破坏时的最大压缩载荷除以试样的横截面积,称为压缩强度极限或抗压强度。压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。与拉伸试验相似,通过压缩试验可以作出压缩曲线。图中为灰铸铁和退火钢的压缩曲线。曲线中纵坐标P为压缩载荷,横坐标Δh为试样承受载荷时的压缩量。如将两坐标值分别除以试样的原截面积和原高度,即可转换成压缩时的应力-应变曲线。图中Pp为比例极限载荷,P0.2为条件屈服极限载荷,P b为破坏载荷。在压缩试验中,试样端面存在较大的摩擦力,影响试验结果。试样越短影响越大,为减少摩擦力的影响,一般规定试样的长度与直径的比为1~3,同时降低试样的表面粗糙度,涂以润滑油脂或垫上一层薄的聚四氟乙烯等材料
如果满意,请采纳!
您的采纳使我继续努力的动力!
⑺ 材料力学压缩实验中对压缩试件的尺寸有何要求为什么
材料压缩实验,通常采用短试样,铸铁压缩时候的强度极限远远大于拉伸时的强度极限,通过实验确定材料的力学性能,了解材料何时发生失效。
⑻ 三轴压缩试验可以模拟哪些实际工程,最好举例
三轴压缩试验是指有侧限压缩和剪力试验。使用的仪器为三轴剪力仪(亦称三轴压缩仪)
三轴剪力仪的核心部分是三轴压力室,并配备有轴压系统、侧压系统和孔隙水压力测读系统等。试验用的土样为圆柱形,其高度与直径之比为2〜2.5
这是专业术语