1. 怎样压缩矩阵元素的存储空间
AC
稀疏矩阵(SparseMatrix):是矩阵中的一种特殊情况,其非零元素的个数远小于零元素的个数.
压缩存储:为多个值相同的元素只分配一个存储空间;对0元素不分配空间.目的是节省大量存储空间.
当使用三元组顺序表(又称有序的双下标法)压缩存储稀疏矩阵时,对矩阵中的每个非零元素用三个域分别表示其所在的行号,列号和元素值.它的特点是,非零元在表中按行序有序存储,因此便于进行依行顺序处理的矩阵运算.当矩阵中的非0元素少于1/3时即可节省存储空间.
2. 什么是压缩矩阵
在这里分开来给你解释
矩阵是许多科学计算、工程数学尤其是数值分析中经常研究的对象,矩阵也就是二维数组,所以它可以采用顺
序存储是来存储其中的元素。但有时矩阵的阶数很高,同时在矩阵中游很多值相同的元素,或大多数元素的值为
零,这时再采用严格的顺序存储显然是很浪费空间的,因为存储零元素或许多值相同的元素是没有意义的,因此为
了节省存储空间,对这类矩阵通常采用压缩存储。
压缩存储:为多个值相同的元素值分配一个存储空间,对零元素不分配存储空间。
特殊矩阵:各个元素的分布有一定规律
系数矩阵:矩阵中多数元素值为零。
3. 数据结构(C语言)矩阵压缩存储
A[0][0] 1
A[1][0] A[1][1] 2
A[2][0] A[2][1] A[2][2] 3
A[3][0] A[3][1] A[3][2] A[3][3] 4
A[4][0] A[4][1] A[4][2] A[4][3] A[4][4] 5
A[5][0] A[5][1] A[5][2] A[5][3] A[5][4] A[5][5] 4
偏移位置在 1+2+3+4+5+4=19*4,十六进制为4c,故为1000H+4C=104CH
4. 稀疏矩阵的压缩存储思想
为了节省存储空间并且加快处理速度,需要对这类矩阵进行压缩存储,压缩存储的原则是:不重复存储相同元素;不存储零值元素。稀疏矩阵,有三元组表示法、带辅助行向量的二元组表示法(也即行逻辑链表的顺序表),十字链表表示法等。算法基本思想:num[col]:第col列的非零元素个数;cpot[col]:第col列第一个非零元在b.data中的恰当位置;在转置过程中,指示该列下一个非零元在b.data中的位置。
5. 特殊矩阵的压缩存储算法的实现
还不简单。就这样那样这样那样的。我以为你以为的、
6. 上三角矩阵的压缩存储原则是怎样的
上三角矩阵的压缩存储原则:对于三角矩阵,从1到N的总和是这么多,也就是说整个矩阵有这么多元素。另外正三角阵对应正方形。
经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。
简正模式:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式)。
称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
7. 矩阵的压缩存储例子
稀疏矩阵压缩存储
一般来讲,零元素多到了一定程度并且没有规律分布的矩阵叫做稀疏矩阵。对稀疏矩阵的压缩存储必须充分考虑以下三个问题:
① 尽可能减少或者不存储零元素以节省空间,降低空间复杂度。
② 尽可能快地实现数据元素的存储位置与原有位置之间的转换。
③ 尽可能不与零元素进行运算,以降低时间复杂度。
稀疏矩阵的压缩存储有三种最常见的方法,分别是三元组顺序表、行逻辑链接顺序表和十字链表。