Ⅰ 往复式压缩机的故障原因及处理方法
钛灵特小编介绍,往复式压缩机出现故障的主要原因是吸气滤清器、活塞环、气阀、冷却水路等部位出现故障,对于这类现象可以用参数法进行诊断。
往复式压缩机常见故障诊断方式
1、人体直观检查诊断
2、振动噪音监测法
3、油液检测法
4、热力性能参数监测法
根据仪表监测往复式压缩机的冷却水量、排气量、水温、油温等数据信息,为诊断部件故障提供参考依据。
5、人工智能诊断
6、早期预警技术
早期预警技术能够对设备的异常信息做出快速的分析和判断,并准确地得出设备当前时刻的异常信息、开停车状态、异常诊断结论等信息,进而主动反馈输出结果,有效辅助现场工作人员对设备进行统一管理。
Ⅱ 往复式压缩机的常见故障以及解决办法
往复式压缩机常见故障及其排除
压缩机在正常工作的情况下,一般是不会没有任何预兆而突然损坏的。在平时要正确地保养机器,做好维护和检修工作,要尽可能把故障消灭在萌芽状态。为了便于用户对压缩机出现的故障进行分析和检修,下面对可能出现的故障原因作了一些叙述。但必须注意,操作人员在处理压缩机发生的故障时不可拘泥于以下的叙述。
1 运动机构和润滑系统
1.1 油压降低(正常工作压力为 0.15~0.4MPa,小于 0.15MPa 时认为不正常)
(1) 机身内润滑油不够。
(2) 油泵管路堵塞或破裂或某个连接部分有渗漏。
(3) 油压表失灵。
(4) 油泵本身或其传动机构有故障。
(5) 油过滤器过滤元件逐渐堵塞。
(6) 运动机构的轴衬(例如主轴瓦、连杆大头瓦等)磨损过甚,使间隙过大,泄油过多。
(7) 油泵齿轮磨损,轴间间隙过大,使内泄漏增大,供油量减少。
1.2 润滑油温过高和磨擦面过热
(1) 润滑油变脏,因机身、滑道的内表面可能有残留的粘砂及脱落的防锈漆,使油变脏,增加了磨擦。尤其是新机,在运行了200小时后即应检查油质或换油。
(2) 运动机构发生故障或磨擦面拉毛,运动付配合间隙不当,使磨擦热增大。
(3) 润滑油供油量不足。
(4) 润滑油中含水、变质而破坏油膜。
(5) 油冷却器供水不足(水压过低)或油冷却器换热表面积垢,造成油冷却不够。
2 水路系统
2.1 冷却效果差
(1) 水压低,使水量减少。
(2) 换热表面(冷却器换热管表面或气缸水道内表面)积垢,影响换热效率。
(3) 管系有渗漏,使水压上不去。
2.2 水中带气或气中带水
(1) 气缸体内部气道与水道交界面或冷却器中气路与水路有微量渗漏,当气压高于水压时表现为排水中带气,水压高于气压时表现为气体中含水。
(1) 压缩机入口气体含湿量较大,如停车时间较长,冷却水温度过低,就会使气缸内气体中的水汽冷凝析出而变水。
3 气路系统
3.1 安全阀
安全阀是气路系统中的重要安全附件,如对安全阀有疑问,可由当地劳动安全部门或标准计量部门对安全阀进行校验,确认安全阀的动作灵敏、正确。经检验合格的安全阀应打上铅封。安全阀一般每年校验一次,或按当地劳动安全部门规定的期限进行校验。
3.2 管系和阀门漏气
查出漏点,检查接点处的联接紧固程度和密封垫片。
6.3.3 进、排气阀工作不正常
(1) 阀片启闭不及时,可能是气阀弹簧力不匹配,可根据该工况重新计算弹簧弹力,更换弹簧或调整工况。
(2) 阀座变形或阀片翘曲,影响气阀的密封。对吸气阀表现为气阀温度明显升高。
(3) 弹簧或阀片折断,使气阀失效。
(2) 介质较脏,在阀座通道和气阀密封面上结焦和积碳,影响了气阀的正常启闭和密封。
4 异常振动和响声
4.1 异常振动
(1) 气缸部分:支撑松动,负荷超过规定值或由于配管及管架设置不当,使脉动过大。
(2) 机身、滑道部分:轴承间隙过大,滑道与十字头的间隙过大,或安装对中不良,或受气缸振动影响。
(3) 管道部分:管道支点过少、支点位置布置不合适或管道在支点处紧固不足,管架刚性不够,或气流脉动频率接近共振频率。
4.2 异常响声
4.1 不规则异常响声。凭测听管判断其位置,并立即停车检查。其原因可能如下:
(1) 活塞与气缸盖之间落入硬质金属块(如断裂的阀片及其它杂物)产生撞击声。
(2) 活塞螺母松脱,或活塞杆与十字头紧固不牢,活塞松扣,造成轻微顶缸。
(3) 气阀松动或气阀弹簧断裂。
(4) 气缸内有积水,产生液击现象。
(5) 有固体物质落入排气缓冲器,发出撞击声。
4.2 规则异常响声。凭测听管来判断其位置,并立即停车检查。其原因可能如下:
(1) 连杆轴衬磨损后间隙过大或连杆螺钉松动。
(2) 主轴瓦严重磨损。
(3) 十字头与滑道间隙过大,产生敲击。
(4) 活塞与活塞杆连接紧定螺母未锁紧,或未拧紧,造成轴向有微量窜动。
压缩机出现异常响声,往往是发生事故的前兆,万万不可大意。
5 其他
5.1填料严重漏气
(1) 密封环和锁闭环的相对位置装错,或波形弹簧失效。
(2) 各密封环、锁闭环或元件平面不平整或平面上有固体颗粒。
(3) 密封环、锁闭环磨损过快,收缩不够,存在偏磨或活塞杆磨损失圆,存在纵向拉痕,严重时应更换活塞杆。
5.2 活塞导向环、活塞环及填料等无油润滑密封元件磨损过快
(1) 介质中杂质多。工作介质中的灰砂、焦油、水分等进入气缸都会加剧密封元件、气缸和活塞杆的磨损。尤其是介质中既带灰砂又带液,就会加剧活塞环及导向环的磨损。
(2) 气缸镜面粗糙度损坏,互相粘剥。
(3) 活塞环开口间隙过小或导向环与气缸间隙过小。
(4) 填料拉伸弹簧弹力过大,一方面加大了密封环和锁闭环与活塞杆的磨擦与磨损,另外也使得活塞杆的工作温度过高。
(5) 材质不良,耐磨性差。
5.3 排气量明显下降或功率消耗超出设计规定要求
(1) 进气过滤器堵塞,系统阻力损失过大,负荷超出规定。
(2) 级间内泄漏过大;气阀升程太小;活塞环磨损严重。
(3) 填料严重漏气、气管路连接不严,形成外泄漏。
(4) 进气温度过高,气阀密封不严密,也将影响排气量。
Ⅲ 往复式压缩机工作原理是什么
往复式压缩机属于容积式压缩机,是使一定容积的气体顺序地吸入和排出封闭空间提高静压力的压缩机。曲轴带动连杆,连杆带动活塞,活塞做上下运动。活塞运动使气缸内的容积发生变化,当活塞向下运动的时候,汽缸容积增大,进气阀打开,排气阀关闭,空气被吸进来,完成进气过程;当活塞向上运动的时候,气缸容积减小,出气阀打开,进气阀关闭,完成压缩过程。
Ⅳ 请教往复式,离心式压缩机,螺杆式压缩机各有什么特点
一、往复式压缩机
优点:
1、热效率高、单位耗电量少
2、加工方便 对材料要求低,造价低廉
3、装置系统较简单
4、设计、生产早,制造技术成熟
5、应用范围广
缺点:1、运动部件多,结构复杂,检修工作量大,维修费用高
2、转速受限制
3、活塞环的磨损、气缸的磨损、皮带的传动方式使效率下降很快
4、噪音大
5、控制系统的落后,不适应连锁控制和无人值守的需要,所以尽管活塞机的价格很低,但是也往往不能够被用户接受。
二、离心式压缩机
优点:
1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。
2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。
3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。
4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。
缺点:
1、离心式压缩机还不适用于气量太小及压比过高的场合。
2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。
3、离心式压缩机效率一般比活塞式压缩机低。
三、螺杆式压缩机
优点:
1、可靠性高。螺杆压缩机零部件少,没有易损件,因而它运转可靠,寿命长,大修间隔期可达4-8万h.
2、操作维护方便。
3、动力平衡好。特别适合用作移动式压缩机,体积小、重量轻、占地面积少。
4、适应性强。螺杆压缩机具有强制输气的特点,容积流量几乎不受排气压力的影响,在宽广的范围内能保持较高的效率,在压缩机结构不作任何改变的情况下,适用于多种工质。
5、多相混输。螺杆压缩机的转子齿面间实际上留有间隙,因而能耐液体冲击,可输送含液气体、含粉尘气体、易聚合气体等。
缺点:
1、造价高。由于螺杆压缩机的转子齿面是一空间曲面,需利用特制的刀具在价格昂贵的专用设备上进行加工。另外,对螺杆压缩机气缸的加工精度也有较高的要求。
2、不能用于高压场合。由于受到转子刚度和轴承寿命等方面的限制,螺杆压缩机只能用于中、低压范围,排气压力一般不超过3MPa。
3、不能用于微型场合。螺杆压缩机依靠间隙密封气体,一般只有容积流量大于0.2m3/min时,螺杆压缩机才具有优越的性能。
山东宏润很高兴为您解答。
Ⅳ 气体输送和压缩设备
输送和压缩气体的设备统称为气体压送机械,其作用与液体输送设备颇为类似,都是把能量传递给流体,使流体流动。
气体压送机械可按其出口气体的压强或压缩比来分类。压送机械出口气体的压强也称为终压。压缩比是指压送机械出口与进口气体的绝对压强的比值。根据终压大致将压送机械分为:
通风机终压不大于15kPa(1500mm H20);
鼓风机终压为0.015~0.3MPa(0.15~3kgf/cm2),压缩比小于4;
压缩机终压在0.3MPa(3kgf/cm2)以上,压缩比大于4;
真空泵将低于大气压的气体从容器或设备内抽至大气中。
此外,压送机械按其结构与工作原理又可分为离心式、往复式、旋转式和流体作用式。
一、离心通风机、鼓风机与离心压缩机
离心通风机、鼓风机及离心压缩机的工作原理与离心泵相似,依靠叶轮的旋转运动,使气体获得能量,从而提高了压强。通风机通常为单级的,所产生的表压强低于15kPa(1500mm H2O),对气体起输送作用。鼓风机有单级亦有多级,产生的表压强低于3kgf/cm2,透平机都是多级的,产生的表压强高于3kgf/cm2,对气体都有较显着的压缩作用。
(一)离心通风机
离心通风机按所产生的风压不同,可分为:
低压离心通风机出口风压低于1kPa(100mm H2O);
中压离心通风机出口风压为1~3kPa(100~300mm H2O);
高压离心通风机出口风压为3~15kPa(300~1500mm H2O)。
1.离心通风机的结构
图2-21所示为低压离心通风机。离心通风机的结构和单级离心泵相似。它的机壳断面有方形和圆形两种。离心通风机的叶片数较离心泵多,而且不限于后弯叶片,也有前弯叶片。在中、低压离心通风机中,多采用前弯叶片,主要原因是由于要求压力不高。前弯叶片有利于提高风速,从而减少通风机的截面积,因而设备尺寸可较后弯时为小。但是,使用前弯叶片时,风机的效率低,能量损失较大。
图2-21离心通风机
1-机壳;2-叶轮;3-吸入口;4-排出口
2.离心通风机的性能参数与特性曲线
离心通风机的主要性能参数有风量、风压、轴功率和效率。由于气体通过风机的压强变化较小,在风机内运动的气体可视为不可压缩,所以离心泵基本方程式亦可用来分析离心通风机的性能。
(1)风量风量是单位时间内从风机出口排出的气体体积,并以风机进口处气体的状态计,以Q表示,单位为m3/h。
(2)风压风压是单位体积的气体流过风机时所获得的能量,以ht表示,单位为J/m3=N/m2。由于ht的单位与压强的单位相同,故称为风压。既然是压强的单位,通常又用mmH2O来表示。
离心通风机的风压取决于风机的结构、叶轮尺寸、转速与进入风机的气体密度。
目前还不能用理论方法去精确计算离心通风机的风压,而是由实验测定。一般通过测量风机进、出口处气体的流速与压强的数据,按柏努利方程式来计算风压。
离心通风机对气体所提供的有效能量,常以1m3气体作为基准。设风机进口为截面1-1′,出口为截面2-2′,根据以单位体积流体为基准的柏努利方程式可得离心通风机的风压为:
非金属矿产加工机械设备
式中ρ及(z2-z1)值都比较小,(z2-z1)ρg可忽略;风机进、出口间管段很短,ρ∑hf1-2也可忽略;又当风机进口处与大气直接相连时,且截面1-1′位于风机进口外侧,则v1也可忽略,因此上式可简化为:
非金属矿产加工机械设备
上式中(p2-p1)称为静风压,以hpt表示。
(3)轴功率与效率离心通风机的轴功率为:
非金属矿产加工机械设备
式中N——轴功率(kW);
Q——风量(m3/s);
ht——风压(Nm/m3);
η——效率,因按全风压定出,故又称为全压效率。
风机的轴功率与被输送气体密度有关,风机性能参数表上所列出的轴功率均为实验条件下,即空气的密度为1.2kg/m3时的数值,若所输送的气体密度与此不同,可按下式进行换算,即:
非金属矿产加工机械设备
式中N′——气体密度为ρ′时的轴功率(kW);
N——气体密度为1.2kg/m3时的轴功率(kW)。
离心通风机的特性曲线,如图2-22所示。表示某种型号通风机在一定转速下,风量Q与风压ht、静风压hpt、轴功率、效率η四者的关系。
图2-22离心通风机特性曲线示意图
3.离心通风机的选择
离心通风机的选择和离心泵的情况相类似,其选择步骤为:
(1)根据柏努利方程式,计算输送系统所需的风压ht。
(2)根据所输送气体的性质(如清洁空气、易燃、易爆或腐蚀气体以及含尘气体等)与风压范围,确定风机类型。若输送的是清洁空气,或与空气性质相近的气体,可选用一般类型的离心通风机,常用的有4-72型、8-18型和9-27型。前一类型属于低压通风机,后两类属于高压通风机。
(3)根据实际风量Q(以风机进口状态计)与实验条件下的风压ht,从风机样本或产品目录中的特性曲线或性能表选择合适的机号,选择原则与离心泵相同,不再详述。
每一类型的离心通风机又有各种不同直径的叶轮,因此离心通风机的型号是在类型之后又加机号,如4-72No.12。4-72表示类型,No.12表示机号,其中12表示叶轮直径为12cm。
(4)若所输送气体的密度大于1.2kg/m时,需按式(2-19)计算轴功率。
表2-4为国产部分风机的性能和用途。
(二)离心鼓风机和离心压缩机
离心鼓风机又称透平鼓风机,工作原理与离心通风机相同,可单级也可多级,多级的结构类似于多级离心泵。图2-23所示为一台五级离心鼓风机的示意图。气体由吸气口进入后,经过第一级的叶轮和导轮,然后转入第二级叶轮入口,再依次通过以后所有的叶轮和导轮,最后由排出口排出。
离心鼓风机的送气量大,但所产生的风压仍不高,出口表压强一般不超过0.3MPa(3kgf/cm3)。由于在离心鼓风机中,气体的压缩比不高,所以无需冷却装置,各级叶轮的直径也大体上相等。
离心压缩机常称透平压缩机,主要结构、工作原理都与离心鼓风机相似,只是离心压缩机的叶轮级数多,可在10级以上,转速较高,故能产生更高的压强。由于气体的压缩比较高,体积变化就比较大,温度升高也较显着。因此,离心压缩机常分成几段,叶轮直径与宽度逐段缩小,段与段之间设置中间冷却器,以免气体温度过高。
离心压缩机流量大,供气均匀,体积小,机体内易损部件少,可连续运转且安全可靠,维修方便,机体内无润滑油污染气体。所以,近年来除要求压强很高的情况以外,离心压缩机的应用日趋广泛。
表2-4常用风机性能范围和用途表
二、旋转鼓风机
目前应用最广的旋转鼓风机是罗茨鼓风机。
罗茨鼓风机的工作原理与齿轮泵相似。如图2-24所示。机壳内有两个特殊形状的转子,常为腰形,两转子之间、转子与机壳之间缝隙很小,使转子能自由转动而无过多的泄漏。两转子旋转方向相反,可使气体从机壳一侧吸入,而从另一侧排出。如改变转子的旋转方向时,则吸入口与排出口互换。
图2-23五级离心鼓风机示意图
罗茨鼓风机的风量和转速成正比,而且几乎不受出口强度变化的影响。罗茨鼓风机转速一定时,风量可保持大体不变,故称定容式鼓风机。这一类型鼓风机的输气量范围是2~500m3/min,出口表压强在80kPa(0.8kgf/cm2)以内,但在表压强为40kPa(0.4kgf/cm2)附近效率较高。
罗茨鼓风机的出口应安装气体稳压罐,并配置安全阀。一般采用回路支路调节流量。出口阀不能完全关闭。操作温度不能超过85℃,否则会引起转子受热膨胀,发生碰撞。
图2-24罗茨鼓风机
三、往复压缩机
往复压缩机的构造、工作原理与往复泵比较相近。主要部件有气缸、活塞、吸气阀和排气阀。依靠活塞的往复运动而将气体吸入和压出。
图2-25所示为立式单作用双缸压缩机,在机体内装有两个并联的气缸1,称为双缸,两个活塞2连于同一根曲轴5上。吸气阀4和排气阀3都在气缸的上部。气缸与活塞端面之间所组成的封闭容积是压缩机的工作容积。曲柄连杆机构推动活塞不断在气缸中作往复运动,使气缸通过吸气阀和排气阀的控制,循环地进行吸气-压缩-排气-膨胀过程,以达到提高气体压强的目的。气缸壁上装有散热翅片,使热量易于扩散。
图2-25立式单作用双缸压缩机
1-气缸体;2-活塞;3-排气阀;4-吸气阀;5-曲轴;6-连杆
(一)往复压缩机的工作过程
往复压缩机的构造和工作原理与往复泵虽相接近,但因往复压缩机所处理的是可压缩的气体,在压缩后气体的压强增大,体积缩小,温度升高,因此往复压缩机的工作过程与往复泵就有所不同,图2-26为单作用往复式压缩机的工作过程。当活塞运动至气缸的最左端(图中A点),压出行程结束。但因为机械结构上的原因,虽则活塞已达到行程的最左端,气缸左侧还有一些容积,称余隙容积。由于余隙的存在,吸入行程开始阶段为余隙内压强为p2的高压气体膨胀过程,直至气压降至吸入气压p1(图中B点)吸入活门才开启,压强为p1的气体被吸入缸内。在整个吸气过程中,压强基本保持不变,直至活塞移至最右端(图中C点),吸入行程结束。当活塞改向左移,压缩行程开始,吸入活门关闭,缸内气体被压缩,当缸内气体的压强增大至稍高于p2(图中D点),排出活门开启,气体从缸体排出,直至活塞至最左端,排出过程结束。
由此可见,压缩机的一个工作循环是由膨胀-吸入-压缩-排出等四个阶段组成。在图2-26的p-V坐标上为一封闭曲线,BC为吸入阶段,CD为压缩阶段,DA为排出阶段,而AB则为余隙气体的膨胀阶段。由于气缸余隙内有高压气体存在,因而使吸入气体量减少,增加动力消耗。故余隙不宜过大,一般余隙容积为活塞一次所扫过容积的3%~8%,此百分比又称余隙系数,以符号ε表示。
图2-26往复压缩机的工作过程
非金属矿产加工机械设备
式中Va——余隙容积;
Vc-Va——活塞扫过的容积。
当气体经压缩后体积缩小,压强增大,温度显着上升。为了提高压缩机的工作效率,在操作上常使用段间冷却方法,以减少气体温度的上升,同时在气缸构造上设置空冷或水冷装置。
(二)往复压缩机的选用
往复压缩机的选用主要依据生产能力和排气压力(或压缩比)两个指标。生产能力通常用以进口状态下流量m3/min表示。排气压力(或称终压)是以Mpa表示。在实际选用时,首先应考虑所输送气体的特殊性质,选定压缩机的种类和压缩段数。然后根据压缩机按气缸的空间位置划分各类型的优缺点,选定压缩机的类型。压缩机的机种和型号选定以后,即可根据生产的需要,按照前述的生产能力和排气压力两个指标,由产品样本中,选定所需用的压缩机。
四、真空泵
从真空容器中抽气并加压排向大气的压缩机称为真空泵。真空泵的型式很多,现将常用的几种,简单介绍如下:
(一)往复真空泵
往复真空泵的基本结构和操作原理与往复压缩机相同,只是真空泵在低压下操作,气缸内外压差很小,所用阀门必须更加轻巧,启闭方便。另外,当所需达到的真空度较高时,如95%的真空度,则压缩比约为20。这样高的压缩比,余隙中残余气体对真空泵的抽气速率影响必然很大。为了减少余隙影响,在真空泵气缸两端之间设置一条平衡气道,在活塞排气终了时,使平衡气道短时间连通,余隙中残余气体从一侧流向另一侧,以降低残余气体的压力,减少余隙的影响。
(二)水环真空泵
如图2-27所示。外壳1内偏心地装有叶轮,其上有辐射状的叶片2。泵内约充有一半容积的水,当旋转时,形成水环3。水环具有液封的作用,与叶片之间形成许多大小不同的密封小室,当小室渐增时,气体从入口4吸入;当小室容积渐减时,气体由出口6排出。
水环真空泵可以造成的最高真空度为85kPa(0.85kgf/cm2)左右,也可以作鼓风机用,但所产生的表压强不超过0.1MPa(1kgf/cm2)。当被抽吸的气体不宜与水接触时,泵内可充以其他液体,所以又称液环真空泵。
图2-27水环式真空泵工作示意图
1-泵体;2-叶轮;3-水环;4-进气孔;5-工作室;6-排气孔;7-排气管;8-进气管;9-放空管;10-水箱;11-放水管道;12-控制阀
此类泵结构简单、紧凑,易于制造与维修,由于旋转部分没有机械摩擦,使用寿命长,操作可靠。适用于抽吸含有液体的气体,尤其在抽吸有腐蚀性或爆炸性气体时更为合适。但效率很低,约为30%~50%,所能造成的真空度受液体温度所限制。
Ⅵ 往复式压缩机的技术参数有哪些
压缩机的基本性能参数
一、实际输气量(简称输气量)
在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是
(4-1)
二、容积效率
压缩机的容积效率是实际输气量与理论输气量之比值
(4-2)
它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。
三、制冷量
制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。
(4-3)
式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为;
-制冷剂在给定制冷工况下的单位容积制冷量,单位为。
为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。
四、排热量
排热量是压缩机的 制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。
图4-1 实际制冷循环
从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的排热量为:
(4-4)
从图4-1b的压缩机的能量平衡关系图上不难发现
(4-5)
上两式中
-压缩机进口处的工质比焓;
-压缩机出口处的工质比焓;
-压缩机的输入功率;
-压缩机向环境的散热量。
表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。
五、指示功率和指示效率
单位时间内实际循环所消耗的指示功就是压缩机的指示功率Pi,单位为kw,它等于
(4-6)
式中 Wi——每一气缸或工作容积的实际循环指示功,单位为J。
制冷压缩机的指示效率hi是指压缩1kg工质所需的等熵循环理论功与实际循环指示功之比。它是用以评价压缩机气缸或工作容积内部热力过程完成的完善程度。
六 轴功率、轴效率和机械效率
由原动机传到压缩机主轴上的功率称为轴功率Pe,单位为kW,它的一部分,即指示功率Pi直接用于完成压缩机的工作循环,另一部分,即摩擦功率Pm,单位为kW,用于克服压缩机中各运动部件的摩擦阻力和驱动附属的设备,如润滑用液压泵等。
七 电功率和电效率
输入电动机的功率就是压缩机所消耗的电功率Pel,单位为kW。电效率*是等熵压缩理论功率与电功率之比,它是用以评定利用电动机输入功率的完善程度。
八 性能系数
为了最终衡量制冷压缩机的动力经济性,采用性能系数COP(Cofficient of performance),它是在一定工况下制冷压缩机的制冷量与所消耗功率之比。
Ⅶ 立式往复压缩机轴瓦座变形
立式往复压缩机轴瓦座变形分三步。
1、润滑油变脏,因机身、滑道的内表面可能有残留的粘砂及脱落的防锈漆,使油变脏,增加了磨擦。尤其是新机,在运行了200小时后即应检查油质或换油。
2、运动机构发生故障或磨擦面拉毛,运动付配合间隙不当,使磨友仔擦热增大。润滑油供孝改油量不足。好慎汪
3、润滑油中含水、变质而破坏油膜。油冷却器供水不足(水压过低)或油冷却器换热表面积垢,造成油冷却不够。
Ⅷ 压缩机可分为几种
1、按其原理可分为容积型压缩机与速度型压缩机。容积型又分为:往复式压缩机、回转式压缩机;速度型压缩机又分为:轴流式压缩机、离心式压缩机和混流式压缩机。
如今家用冰箱和空调器压缩机都是容积式,其中又可分为往复式和旋转式。往复式压缩机使用的是活塞、曲柄、连杆机构或活塞、曲柄、滑管机构,旋转式使用的多是滚动转子压缩机。在商用空调上,又多是离心式、涡旋式、螺杆式。
2、按应用范围又可分为低背压式、中背压式、高背压式。低背压式 ( 蒸发温度 -35 ~ -15 ℃ ) ,一般用于家用电冰箱、食品冷冻箱等。中背压式 ( 蒸发温度 -20 ~ 0 ℃ ) ,一般用于冷饮柜、牛奶冷藏箱等。高背压式 ( 蒸发温度 -5 ~ 15 ℃ ) ,一般用于房间空气调节器、除湿机、热泵等。
其工作原理:
用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用.在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差。
例如,压缩机开始启动,向储气罐打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用。
由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由于气缸内压力的变化,通过进气阀使空气经过空气滤清器进入气缸。
在压缩行程中,由于气缸容积的缩小,压缩空气经过排气阀的作用,经排气管,单向阀进入储气罐,当排气压力达到额定压力0.7MPa时由压力开关控制而自动停机。当储气罐压力降至0.5-0.6MPa时压力开关自动联接启动。
Ⅸ 冰箱压缩机往复式和旋转式
往复式压缩机有压缩和吸气两个行程厅配,吸气行程是对制冷系统在做无用功。旋转式的压缩机的吸气和排气过程是同时完成的,没有无用功过程。更带伏渣高效、蠢悄更稳定、低噪声。
Ⅹ 往复式压缩机工作原理是什么
往复式压缩机是容积式压缩机的一种,其主要部件包括气缸、曲柄连杆机构、活塞组件、填料(也就是压缩机的密封件)、气阀、机身与基础、管线及附属的设备等。
1)气缸:
气缸是压缩机主要零部件之一,应有良好的表面以利于润滑和耐磨,还应具有良好的导热性,以便于使摩擦产生的热能以最快的速度散发出去;还要有足够大的气流通道面积及气阀安装面积,使阀腔容积达到恰好能降低气流的压力脉动幅度,以保证气阀正常工作并降低功耗。余隙容积应小些,以提高压缩机的效率。
2)曲柄连杆机构:
该机构包括十字头、连杆、曲轴、滑导等——它是主要的运转和传动部件件,将电机的圆周运动经连杆转化为活塞的往复运动,同时它也是主要的受力部件。
3)活塞组件:
主要有活塞头、活塞环、托瓦和活塞杆。活塞的形状和尺寸与气缸有密切关系,分为双作用和单作用活塞。活塞环用以密封气缸内的高压气体,防止其从活塞和气缸之间的间隙泄漏。托瓦的作用顾名思义是起支撑活塞的作用,所以托瓦也是易损件,托瓦材质的好坏也直接影响压缩机的使用寿命。
4)填料 :
活塞杆填料主要用于密封气缸内座与活塞杆之间的间隙,阻止气体沿活塞杆径向泄漏。填料环的制造及安装涉及“三个间隙”。分别为轴向间隙(保证填料环在环槽内能自由浮动),径向间隙(防止由于活塞杆的下沉使填料环受压造成变形或者损坏)和切向间隙(用于补偿填料环的磨损)。
5)气阀:
是压缩机最主要的组件,同时也是最容易损坏的零件。其设计的好坏会直接影响到压缩机的排气量、功耗及运转可靠性。好的气阀应具有以下特点:高效节能(占轴功率的3%~7%),气密性与动作及时性完美结合,寿命长(一般实际寿命8000h),形成的余隙容积小,噪音低,温升小,可翻新使用。
(10)立式往复压缩机扩展阅读
往复式压缩机的工作过程可分成膨胀、吸入、压缩和排气四个过程。
例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。
(1) 膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。
(2) 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。
(3) 压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。
出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。
(4) 排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排出气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点)为止。然后,活塞又开始向左移动,重复上述动作。
活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。