1. 在Adobe photoshopcs中如何压缩图片
方法一、 PS软件压缩方法:
1、用Photoshop压缩图片,将图片导入到PS中,然后选择图像选项下的“图像大小”。
2、弹出图像大小对话框,然后就可以修改图片的像素值或图像大小尺寸,像素/图像大小变小了,相片的容量自然就小了,然后点击“确定”按钮即可。
方法二:用Acdsee压缩方法:
1、用电脑中自带的Acdsee看图工具压缩图片体积,右键单击图片然后选择打开方式,就可以将图片导入到Acdsee中。
2、然后在工具选项下就可以选择“调整大小”,在调整大小对话框中,可以通过调整原始图像百分比或大小(像素)来调整图片的大小尺寸。
方法三:用画图工具压缩方法:
1、用电脑中自带的画图工具来压缩图片体积,同方法②一样,右键单击图片然后选择打开方式“画图”。
2、在画图窗口中选择图像下的“拉伸/扭曲”,在弹出对话框中的“水平”和“垂直”参数表中,输入相同的数字,只有输入相同的数字才能保持等比例缩放。当然你要图片瘦身的话,必须输入小于100的数字。
2. 压缩感知是什么
压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
3. 我用的Adobe Photoshop CS6软件,怎么压缩图片好要求图片质量要好。
打开你的图片 (用PS打开),点击文件-存储(会跳出一个JPG选项),在JPG选项里修改图片大小
4. 压缩感知理论基本介绍
姓名:王鑫磊
学号:21011110262
学院:通信工程学院
【嵌牛导读】压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。
【嵌牛鼻子】压缩感知,欠采样,稀疏恢复
【嵌牛提问】压缩感知相比奈奎斯特采样定律的主要突破是什么?
【嵌牛正文】
1.CS的初步理解
CS是一个针对信号采样的技术,是在采样过程中完成数据压缩的过程。我们知道在对模拟信号按一定采样频率进行采样并得到数字信号的过程中,要想完整保留原始信号中的信息,采样频率必须大于信号中最高频率的2倍(奈奎斯特采样定理)。但Candes等人又提出了,如果信号在频域是稀疏的,那么它可以由远低于采样定理要求的采样点重建恢复。Nyquist定理中的采样为等间距采样,若采样频率低必然会引起混叠,如果不等间距采样呢?如果是随机采样呢?随机采样必然会发生频谱泄露,但泄露会均匀分布在整个频域且泄露值都较小,而最大的几个峰值可以通过设置阈值检测出来,从而有了恢复出原始信号的可能。
图1展示了一原始的模拟信号在频域是稀疏的,仅由三个频率分量组成,为了得到数字信号,首先要在时域对其进行采样,根据压缩感知理论,可以在时域进行随机亚采样,之后得到的频谱会产生如图所示的泄露,但可以通过阈值检测求出原始信号的真实频率分量,从而恢复出原始信号。
2. CS的数学模型
CS有两个前提条件:
假设:x是长度为N的原信号,稀疏度为k,它是未知的;Φ为测量矩阵,对应采样过程,也就是压缩的过程,如随机采样,是已知的;采样后的结果为:y=Φx,也是已知的;因此压缩感知问题是:在已知测量值y和测量矩阵Φ的基础上,求解原信号x的过程。然而一般信号x本身并不稀疏,需要在某种稀疏基上进行稀疏表示,即x=Ψs, 其中s为稀疏向量,即为所求的稀疏信号;Ψ为稀疏基矩阵,也叫稀疏变换矩阵,如傅里叶变换。
于是最终问题表示为:
y = ΦΨs = Θs (1)
已知y,Φ,Ψ,求s, Θ称为感知矩阵。感知矩阵需要满足约束等距原则(RIP),因此需要测量矩阵Φ和稀疏基Ψ满足不相关,即采样过程与稀疏过程不相关。Candes等人又找到了独立同分布的高斯随机测量矩阵可以称为普适的压缩感知测量矩阵,于是满足高斯分布的随机测量矩阵就成了CS最常用的观测矩阵。
3. CS的常用方法
已知(1)方程有无数解,因此需要通过增加约束来得到唯一解。方程是稀疏的,因此我们需要找到这个方程里所有解中最稀疏的内个就行了。
求解上述方程一般有三种思路:凸优化算法,贪婪算法,贝叶斯理论。CS常用算法有:
基追踪重构算法 (Basis Pursuit, BP):BP算法是一种凸优化方法。
正交匹配追踪算法 (OMP):OMP属于贪婪算法。
阈值迭代算法 : 包括软阈值迭代(ISTA)和迭代硬阈值(IHT)。ISTA的一种改进方法为快速阈值迭代(FISTA)。
【嵌牛参考】
[1]. Dandes, E. J. . “Near-optimal signal recovery from random projections.” Universal encoding strategies IEEE Transactions on Information Theory 52(2006).
[2]. Donoho, D. L. . “Compressed sensing.” IEEE Transactions on Information Theory 52.4(2006):1289-1306.