导航:首页 > 文件处理 > 非均匀量化的两种压缩率

非均匀量化的两种压缩率

发布时间:2023-07-31 01:06:55

1. A律的概述

A律是ITU-T(国际电联电信标准局)CCITT G.712定义的关于脉冲编码的一种压缩/解压算法。 世界上大部分国家采用A律压缩算法。A律是PCM非均匀量化中的一种对数压扩形式,脉冲编码调制PCM是对一个时间连续的模拟信号先抽样,再对样值幅度量化,编码的过程其中量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示,通常是用二进制表示。而量化中会出现误差,即量化后的信号和抽样信号的差值,量化误差在接收端表现为噪声,称为量化噪声。 量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。 为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。
令量化器过载电压为1,相当于把输入信号进行归一化,那么A律对数压缩定义为:
当0 <= x <= 1/A时,f(x)=(Ax)/(1+lnA)
当1/A <= x <= 1时,f(x)=(1+lnAx)/(1+lnA)
在现行的国际标准中A=87.6,此时信号很小时(即小信号时),从上式可以看到信号被放大了16倍,这相当于与A压缩率与无压缩特性比较,对于小信号的情况,量化间隔比均匀量化时减小了16倍,因此,量化误差大大降低;而对于大信号的情况例如x=1,量化间隔比均匀量化时增大了5.47倍,量化误差增大了。这样实际上就实现了“压大补小”的效果。
上面只讨论了x>0的范围,实际上x和y均在[-1,1] 之间变化,因此,x和y的对应关系曲线是在第一象限与第三象限奇对称。为了简便,x<0的关系表达式未进行描述,但对上式进行简单的修改就能得到。按上式得到的A律压扩特性是连续曲线,A的取值不同其压扩特性亦不相同,而在电路上实现这样的函数规律是相当复杂的。为此,人们提出了数字压扩技术,其基本思想是这样的:利用大量数字电路形成若干根折线,并用这些折线来近似对数的压扩特性,从而达到压扩的目的。为了便于采用数字电路实现量化,通常采用13折线近似代替A律。

2. 在A律特性中,压缩率为什么要选87.6压缩率变化对压缩效果有什么影响

在A律特性中,压缩率为要选87.6的原因:A为压扩参数,A值越大压缩效果就会越明显,压缩率变化对压缩效果影响:A律和μ律,A律编码主要用于30/32路一次群系统,μ律编码主要用于24路一次群系统。

A律的主要表达式,但它当x=0时,y→-∞,这样不满足对压缩特性的要求,所以当x很小时应对它加以修正。A为压扩参数,A=1时无压缩,A值越大压缩效果越明显。

A律

是PCM非均匀量化中的一种对数压扩形式,数字脉冲编码调制(PCM)是目前模拟信号数字化的基本方法,PCM包括采样、量化、编码三个步骤,其中量化是对抽样值的取值离散,根据量化间隔的不同选取分为均匀量化和非均匀量化,非均匀量化可以有效地改善信号的量化信噪比。

3. 数字信号的基本信息

在数字电路中,由于数字信号只有0、1两个状态,它的值是通过中央值来判断的,在中央值以下规定为0,以上规定为1,所以即使混人了其他干扰信号,只要干扰信号的值不超过闽值范围,就可以再现出原来的信号。即使因干扰信号的值超过阂值范围而出现了误码,只要采用一定的编码技术,也很容易将出错的信号检测出来并加以纠正因此,与模拟信号相比,数字信号在传输过程中具有更高的抗干扰能力,更远的传输距离,且失真幅度小 。
数字信号在传输过程中不仅具有较高的抗干扰性,还可以通过压缩,占用较少的带宽,实现在相同的带宽内传输更多、更高音频、视频等数字信号的效果。此外,数字信号还可用半导体存储器来存储,并可直接用于计算机处理。若将电话、传真、电视所处理的音频、文本、视频等数据及其他各种不同形式的信号都转换成数字脉冲来传输,还有利于组成统一的通信网,实现今天rr界人士和电信工业者们极力推崇的综合业务数字网络(IS-DN).从而为人们提供全新的,更灵活、更方便的服务。正因为数字信号具有上述突出的优点,它正在迅速而且已经取得了十分广泛的应用 。
从原始信号转换到数字信号一般要经地抽样、量化和编码这样三个过程。抽样是指每隔一小段时间,取原始信号的一个值。间隔时间越短,单位时间内取的样值也越多,这样取出的一组样值也就越接近原来的信号。抽样以后要进行量化,正如我们常常把成绩80~100分以上归为优,60~79分归为及格,60分以下归为不及格一样,量化就是把取出的各种各样的样值仅用我们指定的若干个值来表示。在上面的成绩“量化”中,我们就是把0~100分仅用三个度“优”、“及格”、“不及格”来量化。最后就是编码,把量化后的值分别编成仅由0和1这两个数字组成的序列,由脉冲信号发生器生成相应的数字信号。这样就可以用数字信号进行传送了 。
数字信号的优点很多,首先是它抗干扰的能力特别强,它不但可以用于通讯技术,而且还可以用于信息处理技术,时髦的高保真音响、高清晰度电视、VCD、DVD激光机都采用了数字信号处理技术。其次,我们使用的电子计算机都是数字的,它们处理的信号本来就是数字信号。在通讯上使用了数字信号,就可以很方便地将计算机与通讯结合起来,将计算机处理信息的优势用于通讯事业。如电话通讯中采用了程控数字交换机,用计算机来代替接线员的工作,不仅接线迅速准确,而且占地小、效率高,省去不少人工和设备,使电话通讯产生了一个质的飞跃。再次,数字信号便于存储,现在流行的CD、MP3唱盘,VCD、DVD视盘及电脑光盘都是用数字信号来存储的信息。此外,数字通信还可以兼容电话、电报、数据和图像等多类信息的传送,能在同一条线路上传送电话、有线电视、多媒体等多种信息。数字信号还便于加密和纠错,具有较强的保密性和可靠性 。 数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示,例如,字长为2位的二进制数可表示4种大小的数字信号,它们是00、01、10和11;若信号的变化范围在-1~1,则这4个二进制数可表示4段数字范围,即[-1, -0.5)、[-0.5, 0)、[0, 0.5)和[0.5, 1] 。

数字信号与离散时间信号的区别在因变量。离散时间信号的自变量是离散的、因变量是连续的,其自变量用整数表示,因变量用于物理量大小相对应的数字表示。离散时间信号的大小用有限位二进制数表示后,就是数字信号。
对于离散时间信号x(n)=sin(0.3n),当自变量n=6时,因变量x(6)=sin(0.3×6)≈0.9738;若用2位二进制把它转变为数字信号,根据[-1, -0.5)、[-0.5, 0)、[0, 0.5)和[0.5, 1]对应00、01、10和11,用二进制数11表示0.9738最合适。
在学习和研究数字信号理论时,用二进制数表示信号是很麻烦的;为了方便,这时人们一般把离散时间信号当作数字信号,而不考虑它们之间的区别。
由于数字信号是用两种物理状态来表示0和1的,故其抵抗材料本身干扰和环境干扰的能力都比模拟信号强很多;在现代技术的信号处理中,数字信号发挥的作用越来越大,几乎复杂的信号处理都离不开数字信号;或者说,只要能把解决问题的方法用数学公式表示,就能用计算机来处理代表物理量的数字信号 。
数字信号特点:抗干扰能力强、无噪声积累。
在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。
对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输。
便于加密处理
信息传输的安全性和保密性越来越重要,数字通信的加密处理的比模拟通信容易得多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密、解密处理。
便于存储、处理和交换
数字通信的信号形式和计算机所用信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储、处理和交换,可使通信网的管理、维护实现自动化、智能化。
设备便于集成化、微型
数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小、功耗低。
便于构成综合数字网和综合业务数字网
采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话业务都可以实现数字化,构成综合业务数字网。
占用信道频带较宽
一路模拟电话的频带为4kHz带宽,一路数字电话约占64kHz。随着宽频带信道(光缆、数字微波)的大量利用(一对光缆可开通几千路电话)以及数字信号处理技术的发展(可将一路数字电话的数码率由64kb/s压缩到32kb/s甚至更低的数码率),数字电话的带宽问题已不是主要问题了。
以上介绍可知,数字通信具有很多优点,所以各国都在积极发展数字通信。我国数字通信得到迅速发展,正朝着高速化、智能化、宽带化和综合化方向迈进。 信号波形模拟随着信息的变化而变化,模拟信号其特点是幅度连续(连续的含义是在某一取值范围内可以取无限多个数值)。模拟信号,其信号波形在时间上也是连续的,因此它又是连续信号。模拟信号按一定的时间间隔T抽样后的抽样信号,由于其波形在时间上是离散的,但此信号的幅度仍然是连续的,所以仍然是模拟信号。电话、传真、电视信号都是模拟信号。
信号抽样后时间离散,但辐值不离散。常见的抽样信号是周期矩形脉冲和周期冲激脉冲抽样。模拟信号在整个时间轴上都是有定义的,在“没有幅值”的区域的意义是幅值为零。而离散时间信号只在离散时刻上才有定义,其他地方没有定义,和幅值为零是不同概念,这两种信号在时间轴看上去很相似,其实是以不同类型的系统为基础的两种有本质区别的信号。直观的说,离散时间信号的横轴可以认为已经不代表时间了。 话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。要使话音信号数字化并实现时分多路复用,首先要在时间上对话音信号进行离散化处理,这一过程叫抽样。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲的间隔T≤1/(2fm)(或f≥2fm)(fm是话音信号的最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。
例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz。对于PAL制电视信号。视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为13.5MHz,色度信号为6.75MHz。 抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。量化有两种方式,量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。量化方式在取整时有舍有入,即0~0.5伏间的输入电压都输出0伏,0.5~1?5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2。因此,采用有舍有入法进行量化,误差较小。
实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。可以证明,量化失真功率?,即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因为,称8个量化级的量化为3比特量化。8比特量化则是指共有个量化级的量化。
量化误差与噪声是有本质的区别的。因为任一时刻的量化误差是可以从输入信号求出,而噪声与信号之间就没有这种关系。可以证明,量化误差是高阶非线性失真的产物。但量化失真在信号中的表现类似于噪声,也有很宽的频谱,所以也被称为量化噪声并用信噪比来衡量。
上面所述的采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。这种非均匀量化级的安排称为非均匀量化或非线性量化。数字电视信号大多采用非均匀量化方式,这是由于模拟视频信号要经过校正,而校正类似于非线性量化特性,可减轻小信号时误差的影响。
对于音频信号的非均匀量化也是采用压缩、扩张的方法,即在发送端对输入的信号进行压缩处理再均匀量化,在接收端再进行相应的扩张处理。
国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。我国规定采用A律13折线压扩特性。
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。 抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流。编码过程在接收端,可以按所收到的信息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽
除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等,表2-1示出了这三种二进制码。这三种码各有优缺点:(1)自然二进制码和二进制数一一对应,简单易行,它是权重码,每一位都有确定的大小,从最高位到最低位依次为,可以直接进行大小比较和算术运算。自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。(2)格雷码则没有这一缺点,它在相邻电平间转换时,只有一位生变化,格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成模拟信号,要经过一次码变换,变成自然二进制码。(3)折叠二进制码沿中心电平上下对称,适于表示正负对称的双极性信号。它的最高位用来区分信号幅值的正负。折叠码的抗误码能力强。
表2-1各种二进制码量化电平
量化电平自然二进制码格雷码折叠二进制码
0000000011
1001001010
2010011001
3011010000
4100110100
5101111101
6110101110
7111100111
在通信理论中,编码分为信源编码和信道编码两大类。所谓信源编码是指将信号源中多余的信息除去,形成一个适合用来传输的信号。为了抑制信道噪声对信号的干扰,往往还需要对信号进行再编码,编成在接收端不易为干扰所弄错的形式,这称为信道编码。为了对付干扰,必须花费更多的时间,传送一些多余的重复信号,从而占用了更多频带,这是通信理论中的一条基本原理。

阅读全文

与非均匀量化的两种压缩率相关的资料

热点内容
涉密场所周边安全防护距离算法 浏览:670
安卓fpse模拟器怎么设置加速 浏览:944
建行app怎么生成电子签章 浏览:508
获取当前时间javadate 浏览:71
带密码的wifi如何加密 浏览:235
服务器怎么变成阵列 浏览:716
web前端黑客技术pdf 浏览:69
育儿百科全书pdf 浏览:598
任务栏启动命令 浏览:912
编译优化等级区别 浏览:755
unix网关命令 浏览:875
想自己做网站要学编程吗 浏览:597
租个服务器开个私服需要什么 浏览:272
图片换成pdf格式 浏览:663
javamidi编程 浏览:833
android60demo 浏览:69
头条算法怎么复习 浏览:514
灯光控制通道可以编程设置吗 浏览:783
webpack命令行 浏览:807
卸载云服务器操作系统 浏览:31