导航:首页 > 文件处理 > 压缩感知与机器学习

压缩感知与机器学习

发布时间:2023-08-17 08:47:59

A. 稀疏度为1的信号,用压缩感知恢复原始信号,匹配追踪算法(MP)和正交匹配追踪算法(OMP)的结果一样吗

压缩感知(Compressed Sensing, CS)[1]理论具有全新的信号获取和处理方式,该理论解决了传统的Nyquist方法采样频率较高的问题,大大降低了稀疏信号精确重构所需的采样频率。
另外,CS理论在数据采集的同时完成数据压缩,从而节约了软、硬件资源及处理时间。
这些突出优点使其在信号处理领域有着广阔的应用前景!

B. 学习了哪些知识,计算机视觉才算入门

计算机视觉是一个很大的范畴的总和,有两种学习方式,一种是阅读基础书,搞懂它的每一部分;另一种是找一个问题,看文献,编程实现,不断往深走。这两种学习方式是互补的,如果你看了好几年书还不能上手解决问题,或者只会解决某些很特殊的问题,对其他问题束手无策都不算成功。因此你需要把看书掌握一般知识和编程实验解决具体问题齐头并进。下面说你要干什么:

下载安装OpenCV2

OpenCV是一个非常强大的计算机视觉库,包括了图像处理、计算机视觉、模式识别、多视图几何的许多基本算法,有c++和Python两种接口。学习的材料首先是安装目录下doc文件夹里的帮助文档,提供所有函数的用法,任何时候对任何函数有疑问请查阅帮助文档,安装目录下还提供一大堆写好的演示程序供参考;《OpenCV_2 Computer Vision Application Programming Cookbook》是一本比较基础的介绍材料,它的缺点是没有介绍分类器(模式识别)方面的函数怎么用。

虽然网上还有其他很多流行的库,比如处理特征点的VLfeat,处理点云的PCL,处理GPU运算的CUDA,处理机器人问题的ROS和MRPT,但是这些都是你在解决具体问题时才会考虑去用的东西,如果你想快速读取视频、做个屏幕交互程序、使用流行的分类器、提取特征点、对图像做处理、进行双目重建,OpenCV都提供相应函数,因此在你不知道该把余生用来干什么的时候,先装OpenCV学习。

读综述

Computer Vision: Algorithms and Application。这本书用1000页篇幅图文并茂地浏览了计算机视觉这门学科的诸多大方向,如果你不知道计算机视觉是一门搞什么的学科,这本书是你绝佳的选择。它的优点是涉猎了大量文献,缺点是缺乏细节,因此很显然只读这本书你根本没法上手工作,因为它讲的实在是太粗糙了。如果你对其中的某一部分感兴趣,就请去读相关文献,继续往下走,这就是这本书的意义。有中文版,但是翻译的不好,也不建议你细细去读,看看里面的图片即可。

Computer Vision: Models, Learning, and Inference:这本书是我认为研究生和高年级本科生入门计算机视觉最好的教材。它内容丰富,难度适中,推导翔实,语言流畅,强烈推荐你花2个月时间把这本书读完。

多视图几何

Multiple View Geometry in Computer Vision:这本书是多视图几何的圣经,意思就是说想搞三维重建或者图像测量之类的项目,这本书是必读的。它需要你有线性代数的基本知识,会SVD分解即可。第一版有中文版,翻译的非常好,但是已经绝版了,可以上淘宝高价买一本,第二版添加的内容很少,在网上可以下载到。

模式识别

模式识别核心就是训练一个函数来拟合手头的数据,如果数据的标签是离散的,称为分类问题,如数据的标签是连续的,称为回归问题;分类又分有监督分类和无监督分类,有监督分类器有神经网络、支持向量机、AdaBoost、随机场、树模型等等。当你拿到一大堆数据,需要从里面找关系的时候,一般都需要使用模式识别算法来训练一个函数/分类器/模型,因此模式识别是机器学习的核心。
《模式分类(第二版)》:这是一本适合普通读者阅读的教材,介绍了模式识别中经典的分类器,讲解细致,语言生动,难度适中,每一个算法都有伪代码。

The Elements of Statistical Learning:这本书使用严谨的数学工具分析模式识别算法,它比较难,但是非常深刻。每拿到一个模型它都会分析这个模型在数学上是如何构造的,并且推导模型的分类错误率。分析和推导是这本书的精髓。

Pattern Recognition and Machine Learning:这是一本从贝叶斯学派的角度分析模式识别模型的书,它使用的工具主要是概率论,比较难,非常深刻,内容非常丰富。

虽然这两本书很难,但是它们用到的数学知识不过是基本的概率论和线性代数,只是用的比较活,计算机视觉这个学科需要的数学知识也是这个水平。

图形学

图形学教材首先推荐《计算机图形学与几何造型导论》,这本书用流畅的语言介绍了图形学的基础知识,选材有趣,推导简洁但是绝不跳步走,保证你能看懂而且不会看烦。

光线追踪器我看过一本薄的《Realistic Ray Tracing》和一本厚的《Ray Tracing from the Ground Up》,两本书都有代码。后一本内容极其丰富,有中文版,翻译尚可。后一本唯一的缺点就是讲不清楚BRDF,但这恰恰是前一本的亮点。

还有一些比较偏的书,比如偏微分方程在图像处理中的应用、细分、压缩感知、马尔科夫随机场、超分辨率分析,概率机器人、多尺度几何分析,这些领域都有各自的名着,你在某个领域深挖的时候,类似这样的书可能会出现在参考文献中,那时再看不迟。

读文献
写到书里的知识基本上都有些过时,你得通过看文献掌握各个领域最新的发展动态。计算机视觉的顶级期刊有两个PAMI和IJCV,顶级会议有ICCV和CVPR,在科学网—[转载]计算机视觉方向的一些顶级会议和期刊有更加详细的介绍。

C. 奈奎斯特采样定理与压缩感知

姓名:苏彦恺

学号:14020150008

【嵌牛导读】:传统的奈奎斯特采样定律随着数字信号处理技术的发展,其缺陷以及应用上的不便日渐凸显,压缩感知技术应运而生。本文依据《数字信号处理》课程所学,对奈奎斯特采样定理进行了原理以及上的概述,同时在本文的后半部分,对压缩感知这一新式的信号处理技术进行了简单介绍。在本文的末尾,依据奈奎斯特采样定理与压缩感知原理上的异同进行了优缺点的分析,同时对压缩感知的发展进行了展望。

【嵌牛鼻子】:数字信号处理;奈奎斯特采样定理;压缩感知;稀疏矩阵

【嵌牛提问】:什么是压缩感知?与传统的奈奎斯特采样定理相比,压缩感知有什么样的特点和优势?

【嵌牛正文】:

奈奎斯特采样定理部分

一、概述

在数字信号处理领域中,采样定理是连续时间信号(通常称为“模拟信号”)和离散时间信号(通常称为“数字信号”)之间的基本桥梁。该定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。 它为采样率建立了一个足够的条件,该采样率允许离散采样序列从有限带宽的连续时间信号中捕获所有信息

二、基本原理 :

在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍。

当用采样频率F对一个信号进行采样时,信号中F/2以上的频率不是消失了,而是对称的映象到了F/2以下的频带中,并且和F/2以下的原有频率成分叠加起来,这个现象叫做“混叠”(aliasing).

消除混叠的方法有两种:

1.提高采样频率F,即缩小采样时间间隔.然而实际的信号处理系统不可能达到很大的采样频率,处理不了很多的数据.另外,许多信号本身可能含有全频带的频率成分,不可能将采样频率提高到无穷大.所以,通过采样频率避免混叠是有限制的.

2.采用抗混叠滤波器.在采用频率F一定的前提下,通过低通滤波器滤掉高于F/2的频率成分,通过低通滤波器的信号则可避免出现频率混叠.

公式:C = B * log2 N ( bps )

三、应用

采样定理通常针对单个变量的函数进行公式化。因此,定理可直接适用于时间相关的信号,并且通常在该上下文中公式化。然而,采样定理可以以直接的方式扩展到任意多个变量的函数。

灰度图像通常表示为代表位于行和列采样位置的交叉处的像素(图像元素)的相对强度的实数的二维阵列(或矩阵)。因此,图像需要两个独立变量或索引,以指定每个像素唯一一个用于行,一个用于列。

彩色图像通常由三个单独的灰度图像的组合构成,一个代表三原色(红色,绿色和蓝色)或简称RGB中的每一个。对于颜色使用3向量的其他颜色空间包括HSV,CIELAB,XYZ等。诸如青色,品红色,黄色和黑色(CMYK)的一些颜色空间可以通过四维表示颜色。所有这些都被处理为二维采样域上的向量值函数。

类似于一维离散时间信号,如果采样分辨率或像素密度不足,图像也可能遭受混叠。例如,具有高频率(换句话说,条纹之间的距离小)的条纹衬衫的数码照片可以在衬衫被照相机的图像传感器采样时导致衬衫的混淆。对于这种情况,在空间域中采样的“解决方案”将是更靠近衬衫,使用更高分辨率的传感器,或者在用传感器采集图像之前对图像进行光学处理

压缩感知部分

一、概述

压缩感知(Compressed sensing),也被称为压缩采样(Compressivesampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法利用讯号稀疏的特性,相较于奈奎斯特理论,得以从较少的测量值还原出原来整个欲得知的讯号。MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。近几年,为了因应即将来临的第五代移动通信系统,压缩感知技术也被大量应用在无线通讯系统之中,获得了大量的关注以及研究。

二、基本原理

为了更好的说明压缩感知的基本原理,在这里引入奈奎斯特采样进行比较说明。

如图2.1所示, 图b、d为三个余弦函数信号叠加构成的信号,在频谱图(图a)中只有个峰值。 如果对其进行8倍于全采样的等间距亚采样(图b下方的红点),则频域信号周期延拓后,就会发生混叠(图c),无法从结果中复原出原信号。

而如果采用随机亚采样(图2.2b上方的红点),那么这时候频域就不再是以固定周期进行延拓了,而是会产生大量不相关的干扰值。如图2.2c,最大的几个峰值还依稀可见,只是一定程度上被干扰值覆盖。这些干扰值看上去非常像随机噪声,但实际上是由于三个原始信号的非零值发生能量泄露导致的(不同颜色的干扰值表示它们分别是由于对应颜色的原始信号的非零值泄露导致的)。得到如图2.2d的频谱图后,再采用匹配追踪的算法,就可以对信号进行恢复。以上就是压缩感知理论的核心思想——以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,由于频谱是均匀泄露的,而不是整体延拓的,因此可以通过特别的追踪方法将原信号恢复。

三、应用

1、全息成像

全息成像是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者投射的光线可以通过记录胶片完全重建,通过不同方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的想可以使人产生立体视觉。然而全息图记录的立体信息非常庞大,在满足传统的香农采样定理进行采样时很难达到的带宽及存储和传输这些信息成为限制全息术发展的难题。

压缩感知技术为传统的信息采样传输带来了革命性的突破,为信号的计算和传输节省了很大资源。利用压缩感知可以去掉大量没有实际意义的信息采样,通过远低于传统采样样本点就可以重构出原始信号,解决了全息术在数据存储和传输方面的限制。

2、核磁共振成像

核磁共振成像作为一种极其重要的医学成像技术,具有对病灶诊断精确、对人体安全性高等优点,但是较长的数据采集时间成为其广泛应用的瓶颈。因此,在保证成像质量的前提下,探索一种新的快速成像方法迫在眉睫。压缩感知作为一种全新的信号采样理论,针对稀疏信号或可压缩信号,可以在采样数量远少于传统采样方式的情况下精确地恢复出原始信号,这就为核磁共振图像的快速获取提供了一种新的思路。

四、奈奎斯特和压缩感知的对比

从采样的角度来看,压缩感知和基于奈奎斯特采样定理的传统信号采集是两种不同形式的信号采集方式。(压缩感知打破了传统信号处理中对于奈奎斯特采样要求的限制)

1.采样率:在压缩感知理论下,信号的采样率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容(稀疏性)。关于采样率的计算方式,压缩感知是从少量离散测量数据恢复离散数字信号,其计算方式为采样率=测量值的大小/恢复信号的大小;而传统信号采集是从离散采样数据中恢复模拟信号。

2.信号采集方式:传统采样理论是通过均匀采样获取数据;压缩感知则通过计算信号与一个观测函数之间的内积来获得观测数据。

3.恢复信号形式:传统采样定理关注的对象是无限长的连续信号;压缩感知是有限维观测向量空间的向量即离散信号。

4.恢复信号方式:传统采样恢复是在奈奎斯特采样定理的基础上,通过采样数据的sinc函数线性内插获得,而压缩感知采用的是利用信号的稀疏性,从线性观测数据中通过求解一个非线性的优化问题来恢复信号的方法。

5.压缩感知的核心思想:压缩和采样合并进行,并且测量值远小于传统采样方法的数据量,突破香农采样定理的瓶颈,使高分辨率的信号采集成为可能。

总结

奈奎斯特采样定理一直是信号处理领域的金科玉律,但其性能仍没法满足诸如全息成像、核磁共振等产生庞大数据的技术的信息恢复。然而在数字信号处理领域进入二十一世纪以后,压缩感知技术带来了颠覆性的改变,以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,通过特别的追踪方法将原信号恢复,使得用于恢复信号的数据量远少于传统采样所需要的数据量。压缩感知理论的诞生已经对计算科学、信号处理、电子信息等领域产生重大的影响,其理论具有广阔的应用前景,但仍然不够完善,希望在今后的研究中能弥补压缩感知现有的不足,展现其强大的生命力,为更多难题提供新的解决方法。

D. 谁能解释一下压缩感知的用途和基本原理

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

E. 压缩感知的图像处理与应用有哪些

数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.

阅读全文

与压缩感知与机器学习相关的资料

热点内容
怎么样分解压缩包图标 浏览:619
php两年工作经验简历 浏览:763
怎么提前解压房贷 浏览:698
反诈宣传app哪里可以拿到用户资料 浏览:855
华为交换机命令配置 浏览:11
电机pid算法实例c语言 浏览:972
安装ue5未找到金属编译器 浏览:963
l1压缩性骨折微创手术 浏览:615
看电脑配置命令 浏览:108
单片机调用db数值偏移量 浏览:446
奔驰smart车型压缩机功率 浏览:527
服务器预留地址获取 浏览:1004
云库文件夹怎么设置 浏览:295
文件夹目录制作自动跳转 浏览:454
在哪个音乐app能听exo的歌 浏览:849
pdf超级加密 浏览:49
苹果手机app安装包怎么解压并安装 浏览:907
中原30系统源码 浏览:187
程序员如何遵纪守法 浏览:501
java的webxml配置 浏览:964