导航:首页 > 文件处理 > responses文件夹能删除吗

responses文件夹能删除吗

发布时间:2023-10-20 01:17:01

python导入模块或包需要注意哪些点

Python是一种面向对象的编程语言,里面包含有丰富强大的库,想要学习Python开发,首先需要学习如何导入模块或包。下面就跟大家一起讨论下Python导入模块的几种方法:
常规导入
最常用的导入方式,大概是这样的:
import sys
只需要使用 import ,然后指定希望导入的模块或包即可。用这种方法导入的好处是可以一次性导入多个包或模块:
import os, sys, time
虽然这节省了空间,但是却违背了Python风格指南。 Python风格指南建议将每个导入语句单独成行 。
有时在导入模块时,你想要重命名这个模块。这个功能很容易实现:
import sys as system
print(system.platform)
上面的代码将我们导入的 sys 模块重命名为 system 。我们可以按照和以前一样的方式调用模块的方法,但是可以用一个新的模块名。也有某些子模块必须要使用点标记法才能导入。
import urllib.error
这个情况不常见,但是对此有所了解总是没有坏处的。
使用from语句导入
有时我们只想要导入一个模块或库中的某个部分。那么Python是如何实现这点:
from functools import lru_cache
上面这行代码可以让你直接调用 lru_cache 。如果按常规方式导入 functools ,那么就必须像这样调用 lru_cache :
functools.lru_cache(*args)
根据实际的使用场景,上面的做法可能是更好的。在复杂的代码库中,能够看出某个函数是从哪里导入的这点很有用的。不过,如果你的代码维护的很好,模块化程度高,那么只从某个模块中导入一部分内容也是非常方便和简洁的。
当然,你还可以使用from方法导入模块的全部内容,就像这样:
from os import *
这种做法在少数情况下是挺方便的,但是这样也会打乱你的命名空间。问题在于,你可能定义了一个与导入模块中名称相同的变量或函数,这时如果你试图使用
os 模块中的同名变量或函数,实际使用的将是你自己定义的内容。因此,你最后可能会碰到一个相当让人困惑的逻辑错误。
标准库中我唯一推荐全盘导入的模块只有Tkinter 。
如果你正好要写自己的模块或包,有人会建议你在 __init__.py 文件中导入所有内容,让模块或者包使用起来更方便。我个人更喜欢显示地导入,而非隐式地导入。
你也可以采取折中方案,从一个包中导入多个项:
from os import path, walk, unlinkfrom os import uname, remove
在上述代码中,我们从 os 模块中导入了5个函数。你可能注意到了,我们是通过多次从同一个模块中导入实现的。当然,如果你愿意的话,你也可以使用圆括号一次性导入多个项:
from os import (path, walk, unlink, uname,
remove, rename)
这是一个有用的技巧,不过你也可以换一种方式:
from os import path, walk, unlink, uname, \
remove, rename
上面的反斜杠是Python中的续行符,告诉解释器这行代码延续至下一行。
相对导入
PEP 328 介绍了引入相对导入的原因,以及选择了哪种语法。具体来说,是使用句点来决定如何相对导入其他包或模块。这么做的原因是为了避免偶然情况下导入标准库中的模块产生冲突。这里我们以PEP 328中给出的文件夹结构为例,看看相对导入是如何工作的:
my_package/
__init__.py
subpackage1/
__init__.py
mole_x.py
mole_y.py
subpackage2/
__init__.py
mole_z.py
mole_a.py
在本地磁盘上找个地方创建上述文件和文件夹。在顶层的 __init__.py 文件中,输入以下代码:
from . import subpackage1from . import subpackage2
接下来进入 subpackage1 文件夹,编辑其中的 __init__.py 文件,输入以下代码:
from . import mole_xfrom . import mole_y
现在编辑 mole_x.py 文件,输入以下代码:
from .mole_y import spam as ham
def main():
ham()
最后编辑 mole_y.py 文件,输入以下代码:
def spam():
print('spam ' * 3)
打开终端, cd 至 my_package 包所在的文件夹,但不要进入 my_package 。在这个文件夹下运行Python解释器。我使用的是IPython,因为它的自动补全功能非常方便:
In [1]: import my_package
In [2]: my_package.subpackage1.mole_xOut[2]: <mole
'my_package.subpackage1.mole_x' from
'my_package/subpackage1/mole_x.py'>
In [3]: my_package.subpackage1.mole_x.main()spam spam spam
相对导入适用于你最终要放入包中的代码。如果你编写了很多相关性强的代码,那么应该采用这种导入方式。
你会发现PyPI上有很多流行的包也是采用了相对导入 。还要注意一点,如果你想要跨越多个文件层级进行导入,只需要使用多个句点即可。不过, PEP
328建议相对导入的层级不要超过两层 。
还要注意一点,如果你往 mole_x.py 文件中添加了 if __name__ == ‘__main__’ ,然后试图运行这个文件,你会碰到一个很难理解的错误。编辑一下文件,试试看吧!
from . mole_y import spam as ham
def main():
ham()
if __name__ == '__main__':
# This won't work!
main()
现在从终端进入 subpackage1 文件夹,执行以下命令
python mole_x.py
如果你使用的是Python 2,你应该会看到下面的错误信息:
Traceback (most recent call last):
File "mole_x.py", line 1, in <mole>
from . mole_y import spam as hamValueError: Attempted relative import in non-package
如果你使用的是Python 3,错误信息大概是这样的:
Traceback (most recent call last):
File "mole_x.py", line 1, in <mole>
from . mole_y import spam as hamSystemError: Parent mole '' not loaded, cannot perform relative import
这指的是, mole_x.py 是某个包中的一个模块,而你试图以脚本模式执行,但是 这种模式不支持相对导入 。
如果你想在自己的代码中使用这个模块,那么你必须将其添加至Python的导入检索路径(import search path)。最简单的做法如下:
import syssys.path.append('/path/to/folder/containing/my_package')import my_package
注意,你需要添加的是 my_package 的上一层文件夹路径,而不是 my_package 本身。原因是 my_package 就是我们想要使用的包,所以如果你添加它的路径,那么将无法使用这个包。
我们接下来谈谈可选导入。
可选导入(Optional imports)
如果你希望优先使用某个模块或包,但是同时也想在没有这个模块或包的情况下有备选,你就可以使用可选导入这种方式。这样做可以导入支持某个软件的多种版本或者实现性能提升。以 github2包 中的代码为例:
try:
# For Python 3
from http.client import responsesexcept ImportError: # For Python 2.5-2.7
try:
from httplib import responses # NOQA
except ImportError: # For Python 2.4
from BaseHTTPServer import BaseHTTPRequestHandler as _BHRH
responses = dict([(k, v[0]) for k, v in _BHRH.responses.items()])
lxml 包也有使用可选导入方式:
try:
from urlparse import urljoin
from urllib2 import urlopenexcept ImportError:
# Python 3
from urllib.parse import urljoin
from urllib.request import urlopen
正如以上示例所示, 可选导入的使用很常见,是一个值得掌握的技巧 。
局部导入
当你在局部作用域中导入模块时,你执行的就是局部导入。如果你在Python脚本文件的顶部导入一个模块,那么你就是在将该模块导入至全局作用域,这意味着之后的任何函数或方法都可能访问该模块。例如:
import sys # global scope
def square_root(a):
# This import is into the square_root functions local scope
import math
return math.sqrt(a)
def my_pow(base_num, power):
return math.pow(base_num, power)
if __name__ == '__main__':
print(square_root(49))
print(my_pow(2, 3))
这里,我们将 sys 模块导入至全局作用域,但我们并没有使用这个模块。然后,在 square_root 函数中,我们将 math
模块导入至该函数的局部作用域,这意味着 math 模块只能在 square_root 函数内部使用。如果我们试图在 my_pow 函数中使用
math ,会引发 NameError 。试着执行这个脚本,看看会发生什么。
使用局部作用域的好处之一,是你使用的模块可能需要很长时间才能导入,如果是这样的话,将其放在某个不经常调用的函数中或许更加合理,而不是直接在全局作
用域中导入。老实说,我几乎从没有使用过局部导入,主要是因为如果模块内部到处都有导入语句,会很难分辨出这样做的原因和用途。
根据约定,所有的导入语句都应该位于模块的顶部 。
导入注意事项
在导入模块方面,有几个程序员常犯的错误。这里我们介绍两个。
循环导入(circular imports)
覆盖导入(Shadowed imports,暂时翻译为覆盖导入)
先来看看循环导入。
循环导入
如果你创建两个模块,二者相互导入对方,那么就会出现循环导入。例如:
# a.pyimport b
def a_test():
print("in a_test")
b.b_test()
a_test()
然后在同个文件夹中创建另一个模块,将其命名为 b.py 。
import a
def b_test():
print('In test_b"')
a.a_test()
b_test()
如果你运行任意一个模块,都会引发 AttributeError 。这是因为这两个模块都在试图导入对方。简单来说,模块 a 想要导入模块 b
,但是因为模块 b 也在试图导入模块 a (这时正在执行),模块 a 将无法完成模块 b
的导入。我看过一些解决这个问题的破解方法(hack),但是 一般来说,你应该做的是重构代码,避免发生这种情况 。
覆盖导入
当你创建的模块与标准库中的模块同名时,如果你导入这个模块,就会出现覆盖导入。举个例子,创建一个名叫 math.py 的文件,在其中写入如下代码:
import math
def square_root(number):
return math.sqrt(number)
square_root(72)
现在打开终端,试着运行这个文件,你会得到以下回溯信息(traceback):
Traceback (most recent call last):
File "math.py", line 1, in <mole>
import math
File "/Users/michael/Desktop/math.py", line 6, in <mole>
square_root(72)
File "/Users/michael/Desktop/math.py", line 4, in square_root
return math.sqrt(number)AttributeError: mole 'math' has no attribute 'sqrt'
这到底是怎么回事?其实,你运行这个文件的时候,Python解释器首先在当前运行脚本所处的的文件夹中查找名叫 math
的模块。在这个例子中,解释器找到了我们正在执行的模块,试图导入它。但是我们的模块中并没有叫 sqrt 的函数或属性,所以就抛出了
AttributeError 。

⑵ /proc文件系统的作用

理解 Proc 文件系统

--------------------------------------------------------------------------------

作者:王旭 翻译 2004-10-05 18:25:55 来自:linuxfocus

目录:
/proc --- 一个虚拟文件系统
加载 proc 文件系统
察看 /proc 的文件
得到有用的系统/内核信息
有关运行中的进程的信息
通过 /proc 与内核交互
结论
参考文献

摘要:

Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构、改变内核设置的机制。尽管在各种硬件平台上的 Linux 系统的 /proc 文件系统的基本概念都是相同的,但本文只讨论基于 intel x86 架构的 Linux /proc 文件系统。

_________________ _________________ _________________

/proc --- 一个虚拟文件系统
/proc 文件系统是一种内核和内核模块用来向进程 (process) 发送信息的机制 (所以叫做 /proc)。这个伪文件系统让你可以和内核内部数据结构进行交互,获取 有关进程的有用信息,在运行中 (on the fly) 改变设置 (通过改变内核参数)。 与其他文件系统不同,/proc 存在于内存之中而不是硬盘上。如果你察看文件 /proc/mounts (和 mount 命令一样列出所有已经加载的文件系统),你会看到其中 一行是这样的:

grep proc /proc/mounts
/proc /proc proc rw 0 0

/proc 由内核控制,没有承载 /proc 的设备。因为 /proc 主要存放由内核控制的状态信息,所以大部分这些信息的逻辑位置位于内核控制的内存。对 /proc 进行一次 'ls -l' 可以看到大部分文件都是 0 字节大的;不过察看这些文件的时候,确实可以看到一些信息。这怎么可能?这是因为 /proc 文件系统和其他常规的文件系统一样把自己注册到虚拟文件系统层 (VFS) 了。然而,直到当 VFS 调用它,请求文件、目录的 i-node 的时候,/proc 文件系统才根据内核中的信息建立相应的文件和目录。

加载 proc 文件系统
如果系统中还没有加载 proc 文件系统,可以通过如下命令加载 proc 文件系统:

mount -t proc proc /proc

上述命令将成功加载你的 proc 文件系统。更多细节请阅读 mount 命令的 man page。

察看 /proc 的文件
/proc 的文件可以用于访问有关内核的状态、计算机的属性、正在运行的进程的状态等信息。大部分 /proc 中的文件和目录提供系统物理环境最新的信息。尽管 /proc 中的文件是虚拟的,但它们仍可以使用任何文件编辑器或像'more', 'less'或 'cat'这样的程序来查看。当编辑程序试图打开一个虚拟文件时,这个文件就通过内核中的信息被凭空地 (on the fly) 创建了。这是一些我从我的系统中得到的一些有趣结果:

$ ls -l /proc/cpuinfo
-r--r--r-- 1 root root 0 Dec 25 11:01 /proc/cpuinfo

$ file /proc/cpuinfo
/proc/cpuinfo: empty

$ cat /proc/cpuinfo

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 8
model name : Pentium III (Coppermine)
stepping : 6
cpu MHz : 1000.119
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
sep_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 mmx fxsr xmm
bogomips : 1998.85

processor : 3
vendor_id : GenuineIntel
cpu family : 6
model : 8
model name : Pentium III (Coppermine)
stepping : 6
cpu MHz : 1000.119
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
sep_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 mmx fxsr xmm
bogomips : 1992.29

这是一个从双 CPU 的系统中得到的结果,上述大部分的信息十分清楚地给出了这个系统的有用的硬件信息。有些 /proc 的文件是经过编码的,不同的工具可以被用来解释这些编码过的信息并输出成可读的形式。这样的工具包括:'top', 'ps', 'apm' 等。

得到有用的系统/内核信息

proc 文件系统可以被用于收集有用的关于系统和运行中的内核的信息。下面是一些重要的文件:

/proc/cpuinfo - CPU 的信息 (型号, 家族, 缓存大小等)
/proc/meminfo - 物理内存、交换空间等的信息
/proc/mounts - 已加载的文件系统的列表
/proc/devices - 可用设备的列表
/proc/filesystems - 被支持的文件系统
/proc/moles - 已加载的模块
/proc/version - 内核版本
/proc/cmdline - 系统启动时输入的内核命令行参数
proc 中的文件远不止上面列出的这么多。想要进一步了解的读者可以对 /proc 的每一个文件都'more'一下或读参考文献[1]获取更多的有关 /proc 目录中的文件的信息。我建议使用'more'而不是'cat',除非你知道这个文件很小,因为有些文件 (比如 kcore) 可能会非常长。

有关运行中的进程的信息
/proc 文件系统可以用于获取运行中的进程的信息。在 /proc 中有一些编号的子目录。每个编号的目录对应一个进程 id (PID)。这样,每一个运行中的进程 /proc 中都有一个用它的 PID 命名的目录。这些子目录中包含可以提供有关进程的状态和环境的重要细节信息的文件。让我们试着查找一个运行中的进程。

$ ps -aef | grep mozilla
root 32558 32425 8 22:53 pts/1 00:01:23 /usr/bin/mozilla

上述命令显示有一个正在运行的 mozilla 进程的 PID 是 32558。相对应的,/proc 中应该有一个名叫 32558 的目录

$ ls -l /proc/32558
total 0
-r--r--r-- 1 root root 0 Dec 25 22:59 cmdline
-r--r--r-- 1 root root 0 Dec 25 22:59 cpu
lrwxrwxrwx 1 root root 0 Dec 25 22:59 cwd -> /proc/
-r-------- 1 root root 0 Dec 25 22:59 environ
lrwxrwxrwx 1 root root 0 Dec 25 22:59 exe -> /usr/bin/mozilla*
dr-x------ 2 root root 0 Dec 25 22:59 fd/
-r--r--r-- 1 root root 0 Dec 25 22:59 maps
-rw------- 1 root root 0 Dec 25 22:59 mem
-r--r--r-- 1 root root 0 Dec 25 22:59 mounts
lrwxrwxrwx 1 root root 0 Dec 25 22:59 root -> //
-r--r--r-- 1 root root 0 Dec 25 22:59 stat
-r--r--r-- 1 root root 0 Dec 25 22:59 statm
-r--r--r-- 1 root root 0 Dec 25 22:59 status

文件 "cmdline" 包含启动进程时调用的命令行。"envir" 进程的环境变两。 "status" 是进程的状态信息,包括启动进程的用户的用户ID (UID) 和组ID(GID) ,父进程ID (PPID),还有进程当前的状态,比如"Sleelping"和"Running"。每个进程的目录都有几个符号链接,"cwd"是指向进程当前工作目录的符号链接,"exe"指向运行的进程的可执行程序,"root"指向被这个进程看作是根目录的目录 (通常是"/")。目录"fd"包含指向进程使用的文件描述符的链接。 "cpu"仅在运行 SMP 内核时出现,里面是按 CPU 划分的进程时间。

/proc/self 是一个有趣的子目录,它使得程序可以方便地使用 /proc 查找本进程地信息。/proc/self 是一个链接到 /proc 中访问 /proc 的进程所对应的 PID 的目录的符号链接。

通过 /proc 与内核交互

上面讨论的大部分 /proc 的文件是只读的。而实际上 /proc 文件系统通过 /proc 中可读写的文件提供了对内核的交互机制。写这些文件可以改变内核的状态,因而要慎重改动这些文件。/proc/sys 目录存放所有可读写的文件的目录,可以被用于改变内核行为。

/proc/sys/kernel - 这个目录包含反通用内核行为的信息。 /proc/sys/kernel/{domainname, hostname} 存放着机器/网络的域名和主机名。这些文件可以用于修改这些名字。

$ hostname
machinename.domainname.com

$ cat /proc/sys/kernel/domainname
domainname.com

$ cat /proc/sys/kernel/hostname
machinename

$ echo "new-machinename" > /proc/sys/kernel/hostname

$ hostname
new-machinename.domainname.com

这样,通过修改 /proc 文件系统中的文件,我们可以修改主机名。很多其他可配置的文件存在于 /proc/sys/kernel/。这里不可能列出所有这些文件,读者可以自己去这个目录查看以得到更多细节信息。
另一个可配置的目录是 /proc/sys/net。这个目录中的文件可以用于修改机器/网络的网络属性。比如,简单修改一个文件,你可以在网络上瘾藏匿的计算机。

$ echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

这将在网络上瘾藏你的机器,因为它不响应 icmp_echo。主机将不会响应其他主机发出的 ping 查询。

$ ping machinename.domainname.com
no answer from machinename.domainname.com

要改回缺省设置,只要

$ echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_all

/proc/sys 下还有许多其它可以用于改变内核属性。读者可以通过参考文献 [1], [2] 获取更多信息。

结论
/proc 文件系统提供了一个基于文件的 Linux 内部接口。它可以用于确定系统的各种不同设备和进程的状态。对他们进行配置。因而,理解和应用有关这个文件系统的知识是理解你的 Linux 系统的关键。

参考文献

[1] 有关Linux proc 文件系统的文档位于: /usr/src/linux/Documentation/filesystems/proc.txt

[2] RedHat Guide: The /proc File System: http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/ch-proc.html

阅读全文

与responses文件夹能删除吗相关的资料

热点内容
arm查询法的局限性和编译流程 浏览:76
醒图的文件夹叫什么 浏览:996
php程序员北京 浏览:175
gcc编译进程数据 浏览:653
手机上的文件夹是怎样的 浏览:166
微云群共享文件夹改变 浏览:534
程序员三年后能做什么 浏览:449
分解运算法则 浏览:876
python脚本执行sudo 浏览:721
安徽科海压缩机 浏览:372
怎么下载app里的讲义 浏览:158
命令重启服务器 浏览:210
android电视root权限获取 浏览:249
解放战争pdf王树增 浏览:685
python压测app接口 浏览:953
抖音app怎么推荐 浏览:100
歌库服务器能做其他什么用途 浏览:95
安卓44虚拟机怎么root 浏览:38
程序员瘦身c盘空间 浏览:243
dell服务器温度怎么看 浏览:303