① 暴风影音支持什么格式。
MP4和RM格式视频暴风影音可以播放。暴风影音支持的格式有:
1、FLV
FLV 是FLASH VIDEO的简称,FLV流媒体格式是随着FlashMX的推出发展而来的视频格式。
2、mp4
MP4(Moving Picture Experts Group 4)是一套用于音频、视频信息的压缩编码标准,由国际标准化组织(ISO)和国际电工委员会(IEC)下属的“动态图像专家组”(Moving Picture Experts Group,即MPEG)制定。
3、RealMedia
RM/RMVB皆为封装RealMedia编码的特有格式(包括RealVideo和RealAudio),RA/RMA这两个文件类型就是Real Media里面向音频方面的格式。
4、MPEG2
MPEG-2是MPEG(Moving Picture Experts Group,运动图像专家组)组织制定的视频和音频有损压缩标准之一,它的正式名称为“基于数字存储媒体运动图像和语音的压缩标准”。
5、WMV
WMV(Windows Media Video)是微软开发的一系列视频编解码和其相关的视频编码格式的统称,是微软Windows媒体框架的一部分。
② 压缩什么格式最小
压缩文件方式选择哪种,占空间最小?
压缩方式的“储存”是不做压缩,“最快、 较快 、标准 、较好、 最好”是逐渐级提高压缩率所以最好压缩率最高,占空间最小
那种格式的压缩文件 占用的空间最小,
7z最大压缩,固实模式。
各格式其实也差不了太多。
什么压缩文件格式占内存最小?
zip选择最优
如何压缩文件到最小
利用winRAR的设置可以做到
右键压缩文件的时候,在左下角的“压缩方式”选择最好
压缩畅可以最小,不过这样的话很有可能会损坏文件,所以如果不是非要压缩到最小,就用标准压缩模式压缩
不过这招也不是对所有文件都有效数埋,有的文件无论用什么压缩标准也不能改变很大,有的甚至压缩和不压缩也是一样大的
而如果是多个txt文件,只要把内容放在一起也都可以减少压缩后的文件体积
什么格式的文件最小
不能单纯的说哪个格式的文件最小
AVI文件可能会有几KB的
TXT文件也可能会有几MB的
要看文件容量大小
或者同类文件或许可以比一下
最小的视频文件格式3gp
最小的音频文件格式矗id或者wma
最小的文本文件格式txt
最小的图片文件格式GIF
什么方法才能把文件压缩到最小
你说的是压缩率的问题:让WINRAR成倍提高压缩率
1、选中并右击要压缩的文件,选择“添加到压缩文件”,在“常规”标志符下选择“创建固实压缩文件”(选择“锁定压缩文件”可使其不能修改其压缩的内容),并在“压缩方式”下选择“最好”。
2、点击“高级”标签下的“压缩”按钮,这时会打开“高级压缩参数”窗口。进行如下操作:
(1)一般程序或文档
将“文本压缩”下的“预测顺序”设置为“30”,“内存使用”,“MB”设置为“30”,这两项值越高,压缩率越高。
(2)未压缩过的音频文件
比如WAV文件,将“音频压缩”下的“声道”设置为“4”(0为自动)。
(3)未压缩过的图片文件
比如BMP、TIF等,可将“真彩压缩”下设置为“强制”。有可能会压缩得比JPG文件还小。
3、从“常规压缩”下的“字典大小KB”下拉菜单中选择“4096”项(如果内存高于64MB的话)。最后点击“确定”开始压缩。
4、将一个任意较小的文本文件,与压缩后的压缩包重新压缩,具体方法请参照1~3步,只是在设置“字典大小KB”时,选择“和岁2048”即可。
(提示:如果是JPG、MP3、EXE等已经压缩过的文件,上述方法就不会提高压缩率了。)
电脑文件有多少种格式?哪种格式压缩后的文件大小最小?
.aiff 声音文件 Windows media Player
.!!! Netants 暂存文件 Netants
.ani 动画鼠标
.arj 压缩文件 ARJ
.avi 电影文件 Windows media Player
.awd 传真文档
.bak 备份文件
.bas Basic 语言 Basic
.bat DOS批处理文件
.bin MAC 二进制码文件 Stuffit Expander
.bmp 图象文件 画图/看图软
.cab 压缩文件 Winzip
.cdr Corel图画文件 Corel Draw
.chk Scandisk检察后制作的文件 可以删掉
DOS命令文件 自执行
.cpx Cryptapix加密图片文件 Cryptapix
.cur 静态鼠标
.dbf 数据库文件 dBase, FoxBase, Access
.dll 应用程序扩展
.doc 文档文件 Word
.dwg AutoCAD文件 AutoCAD
.eps Illustrator 图画文件 Adobe Illustrator
.exe 执行文件 自薯棚蚂执行
.fon 字体文件
.gb 国标码文件 南极星文字处理
.get Getright 暂存文件
.gif 256色图象文件 画图/看图软件
.gz 可供UNIX或LINUX使用的压缩文件 Winzip
.hqx Macintosh 文件 Stuffit Expander
网页 浏览器
网页 浏览器
.ico 图标
.ini 配置设置 笔记本或WordPad
.ipx IPX演示文件 浏览器加装IPX 插件
.jiff 图象文件 画图/看图软件
.jpeg 压缩过的图象文件 画图/看图软件
.jpg 压缩过的图象文件 画图/看图软件
.js javascript
.lnk 快捷方式连接文件 连接文件的相应程序
.m3u Winamp播放列表 Winamp
.mid 声音文件 Windows media Player
.mov Quicktime影像文件 Quick Time
.mp3 压缩音乐文件 Winamp
.mpeg 影像 Windows media Player
.mpg 影像 Windows media Player
.njx 南极星文档 南极星文字处理
.pcb 电子电路图设计文件 Protel PCB
.pdf 便携式文档格式,SupFree0内含图片文字等等 Adobe Acrobat, Adobe Acrobat Reader
.pm5 PageMaker 5 排版文件 Page Maker
.ppt Power Point 文件 Microsoft Power Point
.ps GhostScript
.psd Photoshop文件 Adobe Photoshop
.pub Publisher排版文件 Microsoft Publisher
.qt Quicktime影像文件 Quick Time
.ra Real Audio声音文件 Real Audio
.ram Real Audio影像文件 Real Audio
.rar 压缩文件 Winrar
.rsf Richwin 字体文件
.sch 电子原理图设计文件 Protel Schematic
.scr 屏保文件
.sea Macintosh 启动文件
.sit 压缩 Stuffit Expander
.swf Flas *** 文件 浏览器加装Macromedia ......
什么图片文件格式最小
看你压缩什么样的图片了。
真彩图片:
一般使用JPEG,但JPEG并不是最好的,微软新开发了一种图片格式(名字我忘记了,随着OFFICE2007一起发布)据说比JPEG要好,另外目前已知比JPEG要好的是LWF格式,但这个格式并不是很普及。
256色及以下:
一般使用GIF格式,GIF最高可以支持256种颜色。如果颜色数不足256色,可以使用GIF的压缩软件把GIF图像的色彩数降为128、64、32、16、8、4、2等
只有黑白两色:
使用TIF格式,注意此TIF格式并不是未经压缩的TIF格式,是经过CCITT Group 4压缩标准压缩的TIF格式,使用这个标准压缩后图像中黑色部分记入文件容量,白色部分不记容量,所以黑白图像用这种格式最好最小。
图片文件最小的是什么格式?
gif格式的特点就是小.但是颜色表现不是太好
jpg格式特点是颜色好,但是有点大.
用gif吧.颜色数量少一点,文件小 。
什么方法才能把文件压缩到最小
你说的是压缩率的问题:让WINRAR成倍提高压缩率1、选中并右击要压缩的文件,选择“添加到压缩文件”,在“常规”标志符下选择“创建固实压缩文件”(选择“锁定压缩文件”可使其不能修改其压缩的内容),并在“压缩方式”下选择“最好”。2、点击“高级”标签下的“压缩”按钮,这时会打开“高级压缩参数”窗口。进行如下操作:(1)一般程序或文档将“文本压缩”下的“预测顺序”设置为“30”,“内存使用”,“MB”设置为“30”,这两项值越高,压缩率越高。(2)未压缩过的音频文件比如WAV文件,将“音频压缩”下的“声道”设置为“4”(0为自动)。(3)未压缩过的图片文件比如BMP、TIF等,可将“真彩压缩”下设置为“强制”。有可能会压缩得比JPG文件还小。3、从“常规压缩”下的“字典大小KB”下拉菜单中选择“4096”项(如果内存高于64MB的话)。最后点击“确定”开始压缩。4、将一个任意较小的文本文件,与压缩后的压缩包重新压缩,具体方法请参照1~3步,只是在设置“字典大小KB”时,选择“2048”即可。)
③ 高清视频压缩的格式介绍
这一个比较古老的编码形式,由动态图像专业组织(Moving Pictureures Experts Group即MPEG)于1994年推出的压缩标准。
由于压缩比例较低,已经较为少见。一般一部120分钟长1080p的电影在此种格式下的大小约为30G上下。 MPEG-4多用于HDTVrip上,直接在HDTV上采用MPEG-4视频压缩的很少见。HDTVrip的MPEG-4编码可以理解为:通过把原有的HDTV文件按照比例缩小到一定的尺寸,以达到在减少文件大小、方便传输的同时画面效果不低于DVD效果的目的。可以说这种编码格式是为了达到一种画面效果和文件尺寸的平衡。
由于各个商业集团的纷争,MPEG-4的标准比较混乱,主要基于MPEG-4的常见标准有DivX和XviD。
DivX是一项由DivXNetworks公司发明的,类似于MP3的数字多媒体压缩技术。由于Divx后来转为了商业软件,其发展受到了很大限制,表现相对欠佳,逐渐在竞争中处于了劣势。
XviD则是一个开放源码的MPEG-4 多媒体解码器,它是基于OpenDivX而编写的。XviD是由一群原OpenDivX义务开发者在OpenDivX于2001年7月停止开发后自行开发的,应用较广泛。一部720p的90分钟长的电影大概在4.3G左右,同时画面有普通1080p的80%~90%。
MPEG-4具有很多优点。它的压缩率可以超过100倍,而仍保有极佳的音质和画质;它可利用最少的数据,获取最佳的图像质量,满足低码率应用的需求;它更适合于交互式AV服务及远程监控。具体如下:
1.形状编码
形状信息的获得首先要对图形进行分析和分割,把各个代表不同内容的目标分割后再用形状表示。形状信息通常用二值
Alpha平面来表示。二值Alpha平面可用临近信息进行算术编码(CAE);灰度Alpha平面可用运动补偿加DCT变换方式类似纹理编码一样进行编码。
其中用于图像压缩的变换有离散Forier变换(DFT)、离散小波变换(DWT)、奇异值分解(SVD)、K-L变换、Walsh变换、Hadamard变换、Harr变换、Slant变换、离散余弦变换(DCT)。其中K-L变换的去相关性最好,而DCT是接近K-L变换效果的最便于实现的变换。和MPEG-1/2一样,MPEG-4也选择了DCT。通常,用于数据压缩的熵编码方法有霍夫曼(Huffman)编码、矢量量化、算术编码、游程编码、LZW编码等。对于纹理编码,MPEG-4选择了把游程编码、矢量量化和Huffman编码进行混合编程编码(VLC)。纹理编码要经过DCT变换、量化、DC/AC预测、扫描、基于Hufman的VLC编码。
2.运动估计和补偿
MPEG-4中提供了基于块的运动估计和补偿技术来有效地利用各个VOP中视频内容上的时间冗余。一般,运动估计和补偿可以看作针对任意形状图像序列的块匹配技术的延伸。块匹配过程对于标准宏块使用;预测误差和用于预测的宏块运动向量一起被编码;高级运动补偿模式支持重叠块运动补偿,可对8×8块运动向量进行编码。为了使运动估计得到高编码效率,预测图像和被预测图像越相似越好,所以在运动估计之前要先进行补偿。在目标边界上的MB先用水平填补而后用垂直填补,其余完全在VOP之外的MB用扩张填补。
3.纹理编码
纹理指的是I-VOP图像和P/B-VOP经运动补偿后残留的图像信息。纹理一般在变换域进行压缩编码和熵编码。准正式编辑已经出版:静态图像压缩编码标准(JPEG);数字声像储存压缩编码标准(MPEG-1);通用视频图像压缩编码标准(MPEG-2)。
随后,MPEG专家组于1999年2月正式公布了MPEG-4(ISO/IEC14496)V1.0版本。同年底MPEG-4V2.0版本亦告完成,且于2000年年初正式成为国际标准。MPEG-4标准将众多的多媒体应用集成于一个完整的框架内,旨在为多媒体通信及应用环境提供标准的算法及工具,从而建立起一种能被多媒体传输、存储、检索等应用普遍采用的统一数据格式,并根据不同的应用需求,现场配置解码器,开放的编码系统也可随时加入新的有效的算法模块。为支持对视频内容的访问,MPEG-4提出了“视频对象”的概念。
4.伸屈性
MPEG专家组又推出了专门支持多媒体信息且基于内容检索的编码方案MPEG-7及多媒体框架标准MPEG-21。另外,由ITU-T和MPEG联合开发的新标准H.264是最新的视频编码算法。为了降低码率,获得尽可能更好图像质量,H.264标准吸取了MPEG-4的长处,具有更高的压缩比、更好的信道适应性,必将在数字视频的通信和存储领域得到广泛的应用,其发展潜力不可限量。
视频的伸屈性,包括空间伸屈性和时间伸屈性。空间伸屈性可以得到不同的空间分辨率,时间伸屈性可得到不同的时间分辨率。每种伸屈都有多层,在只有高低2层的情况下,底层指的是基本层,而高层指的是增强层。
5.差错回避
VLC码中的一个比特错误会引起同步丢失,而运动补偿则会引起错误传递。MPEG-4的差错回避有三个方面:重同步、数据恢复和错误隐藏。重同步,是指差错被检测后,解码器和码流之间重新同步的技术。一般来说,这种方法会将错误之前的同步点到重建的同步点之间的数据丢弃。不过这些丢弃的数据可以用其他的技术进行恢复和实施错误隐藏。数据恢复工具在解码器和码流重新建立起同步后用来恢复丢弃的数据。这些工具不是简单的用容错码恢复,而是用一种差错回避手段,即用可逆VLC码字进行VLC编码。错误隐藏,在重同步有效地将错误定位后可以很容易处理。为了进一步提高错误隐匿的能力,有必要增加错误定位能力,特别是数据分割可以用来提高错误定位能力。
总之,为了满足各种应用的需求,MPEG-4标准的使用范围相当庞大,具有广泛的适应性和可扩展性。 全名VC-1视讯编解码器(Video Codec 1),是微软所开发的视讯编解码系统。VC-1是最后被认可的高清编码格式,不过因为有微软的后台,所以这种编码格式不能小窥。相对于MPEG2,VC-1的压缩比更高,但相对于H.264而言,编码解码的计算则要稍小一些。目前来看,VC-1可能是一个比较好的平衡,一般一部1080p长120分钟的电影大概在26G左右。
④ 数据压缩技术的数据压缩技术简史
电脑里的数据压缩其实类似于美眉们的瘦身运动,不外有两大功用。第一,可以节省空间。拿瘦身美眉来说,要是八个美眉可以挤进一辆出租车里,那该有多省钱啊!第二,可以减少对带宽的占用。例如,我们都想在不到 100Kbps 的 GPRS 网上观看 DVD 大片,这就好比瘦身美眉们总希望用一尺布裁出七件吊带衫,前者有待于数据压缩技术的突破性进展,后者则取决于美眉们的恒心和毅力。
简单地说,如果没有数据压缩技术,我们就没法用 WinRAR 为 Email 中的附件瘦身;如果没有数据压缩技术,市场上的数码录音笔就只能记录不到 20 分钟的语音;如果没有数据压缩技术,从 Internet 上下载一部电影也许要花半年的时间……可是这一切究竟是如何实现的呢?数据压缩技术又是怎样从无到有发展起来的呢? 一千多年前的中国学者就知道用“班马”这样的缩略语来指代班固和司马迁,这种崇尚简约的风俗一直延续到了今天的 Internet 时代:当我们在 BBS 上用“ 7456 ”代表“气死我了”,或是用“ B4 ”代表“ Before ”的时候,我们至少应该知道,这其实就是一种最简单的数据压缩呀。
严格意义上的数据压缩起源于人们对概率的认识。当我们对文字信息进行编码时,如果为出现概率较高的字母赋予较短的编码,为出现概率较低的字母赋予较长的编码,总的编码长度就能缩短不少。远在计算机出现之前,着名的 Morse 电码就已经成功地实践了这一准则。在 Morse 码表中,每个字母都对应于一个唯一的点划组合,出现概率最高的字母 e 被编码为一个点“ . ”,而出现概率较低的字母 z 则被编码为“ --.. ”。显然,这可以有效缩短最终的电码长度。
信息论之父 C. E. Shannon 第一次用数学语言阐明了概率与信息冗余度的关系。在 1948 年发表的论文“通信的数学理论( A Mathematical Theory of Communication )”中, Shannon 指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。 Shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。这篇伟大的论文后来被誉为信息论的开山之作,信息熵也奠定了所有数据压缩算法的理论基础。从本质上讲,数据压缩的目的就是要消除信息中的冗余,而信息熵及相关的定理恰恰用数学手段精确地描述了信息冗余的程度。利用信息熵公式,人们可以计算出信息编码的极限,即在一定的概率模型下,无损压缩的编码长度不可能小于信息熵公式给出的结果。
有了完备的理论,接下来的事就是要想办法实现具体的算法,并尽量使算法的输出接近信息熵的极限了。当然,大多数工程技术人员都知道,要将一种理论从数学公式发展成实用技术,就像仅凭一个 E=mc 2 的公式就要去制造核武器一样,并不是一件很容易的事。 设计具体的压缩算法的过程通常更像是一场数学游戏。开发者首先要寻找一种能尽量精确地统计或估计信息中符号出现概率的方法,然后还要设计一套用最短的代码描述每个符号的编码规则。统计学知识对于前一项工作相当有效,迄今为止,人们已经陆续实现了静态模型、半静态模型、自适应模型、 Markov 模型、部分匹配预测模型等概率统计模型。相对而言,编码方法的发展历程更为曲折一些。
1948 年, Shannon 在提出信息熵理论的同时,也给出了一种简单的编码方法—— Shannon 编码。 1952 年, R. M. Fano 又进一步提出了 Fano 编码。这些早期的编码方法揭示了变长编码的基本规律,也确实可以取得一定的压缩效果,但离真正实用的压缩算法还相去甚远。
第一个实用的编码方法是由 D. A. Huffman 在 1952 年的论文“最小冗余度代码的构造方法( A Method for the Construction of Minimum Rendancy Codes )”中提出的。直到今天,许多《数据结构》教材在讨论二叉树时仍要提及这种被后人称为 Huffman 编码的方法。 Huffman 编码在计算机界是如此着名,以至于连编码的发明过程本身也成了人们津津乐道的话题。据说, 1952 年时,年轻的 Huffman 还是麻省理工学院的一名学生,他为了向老师证明自己可以不参加某门功课的期末考试,才设计了这个看似简单,但却影响深远的编码方法。
Huffman 编码效率高,运算速度快,实现方式灵活,从 20 世纪 60 年代至今,在数据压缩领域得到了广泛的应用。例如,早期 UNIX 系统上一个不太为现代人熟知的压缩程序 COMPACT 实际就是 Huffman 0 阶自适应编码的具体实现。 20 世纪 80 年代初, Huffman 编码又出现在 CP/M 和 DOS 系统中,其代表程序叫 SQ 。今天,在许多知名的压缩工具和压缩算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 编码的身影。不过, Huffman 编码所得的编码长度只是对信息熵计算结果的一种近似,还无法真正逼近信息熵的极限。正因为如此,现代压缩技术通常只将 Huffman 视作最终的编码手段,而非数据压缩算法的全部。
科学家们一直没有放弃向信息熵极限挑战的理想。 1968 年前后, P. Elias 发展了 Shannon 和 Fano 的编码方法,构造出从数学角度看来更为完美的 Shannon-Fano-Elias 编码。沿着这一编码方法的思路, 1976 年, J. Rissanen 提出了一种可以成功地逼近信息熵极限的编码方法——算术编码。 1982 年, Rissanen 和 G. G. Langdon 一起改进了算术编码。之后,人们又将算术编码与 J. G. Cleary 和 I. H. Witten 于 1984 年提出的部分匹配预测模型( PPM )相结合,开发出了压缩效果近乎完美的算法。今天,那些名为 PPMC 、 PPMD 或 PPMZ 并号称压缩效果天下第一的通用压缩算法,实际上全都是这一思路的具体实现。
对于无损压缩而言, PPM 模型与算术编码相结合,已经可以最大程度地逼近信息熵的极限。看起来,压缩技术的发展可以到此为止了。不幸的是,事情往往不像想象中的那样简单:算术编码虽然可以获得最短的编码长度,但其本身的复杂性也使得算术编码的任何具体实现在运行时都慢如蜗牛。即使在摩尔定律大行其道, CPU 速度日新月异的今天,算术编码程序的运行速度也很难满足日常应用的需求。没办法,如果不是后文将要提到的那两个犹太人,我们还不知要到什么时候才能用上 WinZIP 这样方便实用的压缩工具呢。 逆向思维永远是科学和技术领域里出奇制胜的法宝。就在大多数人绞尽脑汁想改进 Huffman 或算术编码,以获得一种兼顾了运行速度和压缩效果的“完美”编码的时候,两个聪明的犹太人 J. Ziv 和 A. Lempel 独辟蹊径,完全脱离 Huffman 及算术编码的设计思路,创造出了一系列比 Huffman 编码更有效,比算术编码更快捷的压缩算法。我们通常用这两个犹太人姓氏的缩写,将这些算法统称为 LZ 系列算法。
按照时间顺序, LZ 系列算法的发展历程大致是: Ziv 和 Lempel 于 1977 年发表题为“顺序数据压缩的一个通用算法( A Universal Algorithm for Sequential Data Compression )”的论文,论文中描述的算法被后人称为 LZ77 算法。 1978 年,二人又发表了该论文的续篇“通过可变比率编码的独立序列的压缩( Compression of Indivial Sequences via Variable Rate Coding )”,描述了后来被命名为 LZ78 的压缩算法。 1984 年, T. A. Welch 发表了名为“高性能数据压缩技术( A Technique for High Performance Data Compression )”的论文,描述了他在 Sperry 研究中心(该研究中心后来并入了 Unisys 公司)的研究成果,这是 LZ78 算法的一个变种,也就是后来非常有名的 LZW 算法。 1990 年后, T. C. Bell 等人又陆续提出了许多 LZ 系列算法的变体或改进版本。
说实话, LZ 系列算法的思路并不新鲜,其中既没有高深的理论背景,也没有复杂的数学公式,它们只是简单地延续了千百年来人们对字典的追崇和喜好,并用一种极为巧妙的方式将字典技术应用于通用数据压缩领域。通俗地说,当你用字典中的页码和行号代替文章中每个单词的时候,你实际上已经掌握了 LZ 系列算法的真谛。这种基于字典模型的思路在表面上虽然和 Shannon 、 Huffman 等人开创的统计学方法大相径庭,但在效果上一样可以逼近信息熵的极限。而且,可以从理论上证明, LZ 系列算法在本质上仍然符合信息熵的基本规律。
LZ 系列算法的优越性很快就在数据压缩领域里体现 了 出来,使用 LZ 系列算法的工具软件数量呈爆炸式增长。 UNIX 系统上最先出现了使用 LZW 算法的 compress 程序,该程序很快成为了 UNIX 世界的压缩标准。紧随其后的是 MS-DOS 环境下的 ARC 程序,以及 PKWare 、 PKARC 等仿制品。 20 世纪 80 年代,着名的压缩工具 LHarc 和 ARJ 则是 LZ77 算法的杰出代表。
今天, LZ77 、 LZ78 、 LZW 算法以及它们的各种变体几乎垄断了整个通用数据压缩领域,我们熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等压缩工具以及 ZIP 、 GIF 、 PNG 等文件格式都是 LZ 系列算法的受益者,甚至连 PGP 这样的加密文件格式也选择了 LZ 系列算法作为其数据压缩的标准。
没有谁能否认两位犹太人对数据压缩技术的贡献。我想强调的只是,在工程技术领域,片面追求理论上的完美往往只会事倍功半,如果大家能像 Ziv 和 Lempel 那样,经常换个角度来思考问题,没准儿你我就能发明一种新的算法,就能在技术方展史上扬名立万呢。 LZ 系列算法基本解决了通用数据压缩中兼顾速度与压缩效果的难题。但是,数据压缩领域里还有另一片更为广阔的天地等待着我们去探索。 Shannon 的信息论告诉我们,对信息的先验知识越多,我们就可以把信息压缩得越小。换句话说,如果压缩算法的设计目标不是任意的数据源,而是基本属性已知的特种数据,压缩的效果就会进一步提高。这提醒我们,在发展通用压缩算法之余,还必须认真研究针对各种特殊数据的专用压缩算法。比方说,在今天的数码生活中,遍布于数码相机、数码录音笔、数码随身听、数码摄像机等各种数字设备中的图像、音频、视频信息,就必须经过有效的压缩才能在硬盘上存储或是通过 USB 电缆传输。实际上,多媒体信息的压缩一直是数据压缩领域里的重要课题,其中的每一个分支都有可能主导未来的某个技术潮流,并为数码产品、通信设备和应用软件开发商带来无限的商机。
让我们先从图像数据的压缩讲起。通常所说的图像可以被分为二值图像、灰度图像、彩色图像等不同的类型。每一类图像的压缩方法也不尽相同。
传真技术的发明和广泛使用促进了二值图像压缩算法的飞速发展。 CCITT (国际电报电话咨询委员会,是国际电信联盟 ITU 下属的一个机构)针对传真类应用建立了一系列图像压缩标准,专用于压缩和传递二值图像。这些标准大致包括 20 世纪 70 年代后期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。为了适应不同类型的传真图像,这些标准所用的编码方法包括了一维的 MH 编码和二维的 MR 编码,其中使用了行程编码( RLE )和 Huffman 编码等技术。今天,我们在办公室或家里收发传真时,使用的大多是 CCITT Group 3 压缩标准,一些基于数字网络的传真设备和存放二值图像的 TIFF 文件则使用了 CCITT Group 4 压缩标准。 1993 年, CCITT 和 ISO (国际标准化组织)共同成立的二值图像联合专家组( Joint Bi-level Image Experts Group , JBIG )又将二值图像的压缩进一步发展为更加通用的 JBIG 标准。
实际上,对于二值图像和非连续的灰度、彩色图像而言,包括 LZ 系列算法在内的许多通用压缩算法都能获得很好的压缩效果。例如,诞生于 1987 年的 GIF 图像文件格式使用的是 LZW 压缩算法, 1995 年出现的 PNG 格式比 GIF 格式更加完善,它选择了 LZ77 算法的变体 zlib 来压缩图像数据。此外,利用前面提到过的 Huffman 编码、算术编码以及 PPM 模型,人们事实上已经构造出了许多行之有效的图像压缩算法。
但是,对于生活中更加常见的,像素值在空间上连续变化的灰度或彩色图像(比如数码照片),通用压缩算法的优势就不那么明显了。幸运的是,科学家们发现,如果在压缩这一类图像数据时允许改变一些不太重要的像素值,或者说允许损失一些精度(在压缩通用数据时,我们绝不会容忍任何精度上的损失,但在压缩和显示一幅数码照片时,如果一片树林里某些树叶的颜色稍微变深了一些,看照片的人通常是察觉不到的),我们就有可能在压缩效果上获得突破性的进展。这一思想在数据压缩领域具有革命性的地位:通过在用户的忍耐范围内损失一些精度,我们可以把图像(也包括音频和视频)压缩到原大小的十分之一、百分之一甚至千分之一,这远远超出了通用压缩算法的能力极限。也许,这和生活中常说的“退一步海阔天空”的道理有异曲同工之妙吧。
这种允许精度损失的压缩也被称为有损压缩。在图像压缩领域,着名的 JPEG 标准是有损压缩算法中的经典。 JPEG 标准由静态图像联合专家组( Joint Photographic Experts Group , JPEG )于 1986 年开始制定, 1994 年后成为国际标准。 JPEG 以离散余弦变换( DCT )为核心算法,通过调整质量系数控制图像的精度和大小。对于照片等连续变化的灰度或彩色图像, JPEG 在保证图像质量的前提下,一般可以将图像压缩到原大小的十分之一到二十分之一。如果不考虑图像质量, JPEG 甚至可以将图像压缩到“无限小”。
JPEG 标准的最新进展是 1996 年开始制定, 2001 年正式成为国际标准的 JPEG 2000 。与 JPEG 相比, JPEG 2000 作了大幅改进,其中最重要的是用离散小波变换( DWT )替代了 JPEG 标准中的离散余弦变换。在文件大小相同的情况下, JPEG 2000 压缩的图像比 JPEG 质量更高,精度损失更小。作为一个新标准, JPEG 2000 暂时还没有得到广泛的应用,不过包括数码相机制造商在内的许多企业都对其应用前景表示乐观, JPEG 2000 在图像压缩领域里大显身手的那一天应该不会特别遥远。
JPEG 标准中通过损失精度来换取压缩效果的设计思想直接影响了视频数据的压缩技术。 CCITT 于 1988 年制定了电视电话和会议电视的 H.261 建议草案。 H.261 的基本思路是使用类似 JPEG 标准的算法压缩视频流中的每一帧图像,同时采用运动补偿的帧间预测来消除视频流在时间维度上的冗余信息。在此基础上, 1993 年, ISO 通过了动态图像专家组( Moving Picture Experts Group , MPEG )提出的 MPEG-1 标准。 MPEG-1 可以对普通质量的视频数据进行有效编码。我们现在看到的大多数 VCD 影碟,就是使用 MPEG-1 标准来压缩视频数据的。
为了支持更清晰的视频图像,特别是支持数字电视等高端应用, ISO 于 1994 年提出了新的 MPEG-2 标准(相当于 CCITT 的 H.262 标准)。 MPEG-2 对图像质量作了分级处理,可以适应普通电视节目、会议电视、高清晰数字电视等不同质量的视频应用。在我们的生活中,可以提供高清晰画面的 DVD 影碟所采用的正是 MPEG-2 标准。
Internet 的发展对视频压缩提出了更高的要求。在内容交互、对象编辑、随机存取等新需求的刺激下, ISO 于 1999 年通过了 MPEG-4 标准(相当于 CCITT 的 H.263 和 H.263+ 标准)。 MPEG-4 标准拥有更高的压缩比率,支持并发数据流的编码、基于内容的交互操作、增强的时间域随机存取、容错、基于内容的尺度可变性等先进特性。 Internet 上新兴的 DivX 和 XviD 文件格式就是采用 MPEG-4 标准来压缩视频数据的,它们可以用更小的存储空间或通信带宽提供与 DVD 不相上下的高清晰视频,这使我们在 Internet 上发布或下载数字电影的梦想成为了现实。
就像视频压缩和电视产业的发展密不可分一样,音频数据的压缩技术最早也是由无线电广播、语音通信等领域里的技术人员发展起来的。这其中又以语音编码和压缩技术的研究最为活跃。自从 1939 年 H. Dudley 发明声码器以来,人们陆续发明了脉冲编码调制( PCM )、线性预测( LPC )、矢量量化( VQ )、自适应变换编码( ATC )、子带编码( SBC )等语音分析与处理技术。这些语音技术在采集语音特征,获取数字信号的同时,通常也可以起到降低信息冗余度的作用。像图像压缩领域里的 JPEG 一样,为获得更高的编码效率,大多数语音编码技术都允许一定程度的精度损失。而且,为了更好地用二进制数据存储或传送语音信号,这些语音编码技术在将语音信号转换为数字信息之后又总会用 Huffman 编码、算术编码等通用压缩算法进一步减少数据流中的冗余信息。
对于电脑和数字电器(如数码录音笔、数码随身听)中存储的普通音频信息,我们最常使用的压缩方法主要是 MPEG 系列中的音频压缩标准。例如, MPEG-1 标准提供了 Layer I 、 Layer II 和 Layer III 共三种可选的音频压缩标准, MPEG-2 又进一步引入了 AAC ( Advanced Audio Coding )音频压缩标准, MPEG-4 标准中的音频部分则同时支持合成声音编码和自然声音编码等不同类型的应用。在这许多音频压缩标准中,声名最为显赫的恐怕要数 MPEG-1 Layer III ,也就是我们常说的 MP3 音频压缩标准了。从 MP3 播放器到 MP3 手机,从硬盘上堆积如山的 MP3 文件到 Internet 上版权纠纷不断的 MP3 下载, MP3 早已超出了数据压缩技术的范畴,而成了一种时尚文化的象征了。
很显然,在多媒体信息日益成为主流信息形态的数字化时代里,数据压缩技术特别是专用于图像、音频、视频的数据压缩技术还有相当大的发展空间——毕竟,人们对信息数量和信息质量的追求是永无止境的。 从信息熵到算术编码,从犹太人到 WinRAR ,从 JPEG 到 MP3 ,数据压缩技术的发展史就像是一个写满了“创新”、“挑战”、“突破”和“变革”的羊皮卷轴。也许,我们在这里不厌其烦地罗列年代、人物、标准和文献,其目的只是要告诉大家,前人的成果只不过是后人有望超越的目标而已,谁知道在未来的几年里,还会出现几个 Shannon ,几个 Huffman 呢?
谈到未来,我们还可以补充一些与数据压缩技术的发展趋势有关的话题。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一种全新的通用数据压缩算法。这种算法的核心思想是对字符串轮转后得到的字符矩阵进行排序和变换,类似的变换算法被称为 Burrows-Wheeler 变换,简称 BWT 。与 Ziv 和 Lempel 另辟蹊径的做法如出一辙, Burrows 和 Wheeler 设计的 BWT 算法与以往所有通用压缩算法的设计思路都迥然不同。如今, BWT 算法在开放源码的压缩工具 bzip 中获得了巨大的成功, bzip 对于文本文件的压缩效果要远好于使用 LZ 系列算法的工具软件。这至少可以表明,即便在日趋成熟的通用数据压缩领域,只要能在思路和技术上不断创新,我们仍然可以找到新的突破口。
分形压缩技术是图像压缩领域近几年来的一个热点。这一技术起源于 B. Mandelbrot 于 1977 年创建的分形几何学。 M. Barnsley 在 20 世纪 80 年代后期为分形压缩奠定了理论基础。从 20 世纪 90 年代开始, A. Jacquin 等人陆续提出了许多实验性的分形压缩算法。今天,很多人相信,分形压缩是图像压缩领域里最有潜力的一种技术体系,但也有很多人对此不屑一顾。无论其前景如何,分形压缩技术的研究与发展都提示我们,在经过了几十年的高速发展之后,也许,我们需要一种新的理论,或是几种更有效的数学模型,以支撑和推动数据压缩技术继续向前跃进。
人工智能是另一个可能对数据压缩的未来产生重大影响的关键词。既然 Shannon 认为,信息能否被压缩以及能在多大程度上被压缩与信息的不确定性有直接关系,假设人工智能技术在某一天成熟起来,假设计算机可以像人一样根据已知的少量上下文猜测后续的信息,那么,将信息压缩到原大小的万分之一乃至十万分之一,恐怕就不再是天方夜谭了。
回顾历史之后,人们总喜欢畅想一下未来。但未来终究是未来,如果仅凭你我几句话就可以理清未来的技术发展趋势,那技术创新的工作岂不就索然无味了吗?依我说,未来并不重要,重要的是,赶快到 Internet 上下载几部大片,然后躺在沙发里,好好享受一下数据压缩为我们带来的无限快乐吧。