㈠ 现在的大客车的空调压缩机常用的有几种
常用的大客车空调压缩机有两个品牌:BOCK (博客) BITZER (比泽尔)
国内品牌:欣晖 建设 冷神
用的多的就是博客470 和 比泽尔 4NFCY ,或者这个系列的
你可以参考太昌客车空调的配置单上面就有看的出来那些压缩机是常用的
㈡ 制冷压缩机工作原理
制冷压缩机是制冷系统的心脏,制冷系统通过压缩机输入电能,从而将热量从低温环境排放到高温环境。制冷压缩机的能效比决定整个制冷系统的能效比。由于环境温度是经常变化的,故压缩机大部分时间是出于部分负荷状态,因此压缩机要具有能量调节。
在压缩机壳体外侧封闭联通一个Helmholtz共鸣器,即由Helmholtz共鸣器的腔室通过孔颈与压缩机壳体内部空腔相连成,以降低压缩机腔内受激声学模态的幅值。将共鸣器共振频率调制到实际压缩机空腔的最大受激振动模式上,会大幅降低共振峰值和导致响应频谱的显着改变。但是这样会影响压缩机外 观和在冰箱中的布置,其研究结果尚未应用于产品中。
压缩机作为跨临界二氧化碳空调系统效率及可靠性影响最大的部件,应当充分结合二氧化碳超临界循环具体特点重新进行设计。CO2和氨一样,其绝热指数K值较高,达1.30,这可能会使压缩机排气温度偏高,但由于CO2需要的压缩机的压比小,因此不需要对压缩机本身进行冷却。正因为绝热指数高,压比小,可 减小压缩机余隙容积的再膨胀损失,使压缩机容积效率较高。经过实验和理论研究,Jurgen SUB和Horst Kruse发现,往复式压缩机有良好的油膜滑动密封,成为CO2系统的首选。BOCK对其二氧化碳压缩机排气阀进行了改进,排气改良后的二氧化碳压缩机效率提高了7%。
剩余润滑油量和电机端线圈绕组也会导致同种型号成批压缩机声级之间存在差异(偏离声级平均值)。通过改变壳体外部支承来增加扭转刚度,且减小振动面; 噪声研究的复杂性要求研究者具有较强的理论素质、要求企业具有较好的技术基础、并且需要较大的投资和较长的时间。这方面是中国压缩机企业的薄弱环节之一,基本上处于定性的实验研究阶段,伴随着很大的随意性和偶然性。
基于环保要求的新制冷剂的应用也是制冷压缩机行业的一个热点问题,随着用于冰箱产品的R22制冷剂替代工作的结束,新制冷剂压缩机的研究主要集中在空调行业。除了已比较成熟的R410A、R407C方面的研究外,最大的热点问题是二氧化碳压缩机的研究。由于二氧化碳系统压力远远大于传统的压临界循环系统,压缩机的轴封设计要求比原有压缩机高得多,压缩机的轴封泄漏在一段时间内仍将是阻碍其实用化的主要原因。
制冷压缩机在蒸汽压缩式制冷系统中,把制冷剂从低压提升为高压,并使制冷剂不断循环流动,从而使系统不断将内部热量排放到高于系统温度的环境中。制冷 压缩机是制冷系统的心脏,制冷系统通过压缩机输入电能,从而将热量从低温环境排放到高温环境。制冷压缩机的能效比决定整个制冷系统的能效比。
由于环境温度是经常变化的,故压缩机大部分时间是出于部分负荷状态,因此压缩机要具有能量调节。
在压缩机壳体外侧封闭联通一个Helmholtz共鸣器,即由Helmholtz共鸣器的腔室通过孔颈与压缩机壳体内部空腔相连成,以降低压缩机腔内受激声学模态的幅值。将共鸣器共振频率调制到实际压缩机空腔的最大受激振动模式上,会大幅降低共振峰值和导致响应频谱的显着改变。但是这样会影响压缩机外 观和在冰箱中的布置,其研究结果尚未应用于产品中。
压缩机作为跨临界二氧化碳空调系统效率及可靠性影响最大的部件,应当充分结合二氧化碳超临界循环具体特点重新进行设计。CO2和氨一样,其绝热指数K 值较高,达1.30,这可能会使压缩机排气温度偏高,但由于CO2需要的压缩机的压比小,因此不需要对压缩机本身进行冷却。
正因为绝热指数高,压比小,可 减小压缩机余隙容积的再膨胀损失,使压缩机容积效率较高。经过实验和理论研究,Jurgen SUB和Horst Kruse发现,往复式压缩机有良好的油膜滑动密封,成为CO2系统的首选。BOCK对其二氧化碳压缩机排气阀进行了改进,排气改良后的二氧化碳压缩机效率提高了7%。
剩余润滑油量和电机端线圈绕组也会导致同种型号成批压缩机声级之间存在差异(偏离声级平均值)。通过改变壳体外部支承来增加扭转刚度,且减小振动面; 噪声研究的复杂性要求研究者具有较强的理论素质、要求企业具有较好的技术基础、并且需要较大的投资和较长的时间。这方面是中国压缩机企业的薄弱环节之一,基本上处于定性的实验研究阶段,伴随着很大的随意性和偶然性。
㈢ Performer压缩机是哪个国家的
法国:
“美优乐”(Maneurop)、“百福马”(Performer)、“泰康”(Tecumseh)
丹麦:
“丹佛斯”(Danfoss)
美国:
“艾可”(Alco)、“比斯图”/“布里斯托”(Bristol)、“斯坡兰”(Sporlan)、“谷轮”(copeland)
日本:
“鹭宫”(Saginomiya)
德国:
“比泽尔”(Bitzer)、“博克”(Bock)
意大利:
“法士豪”/“富士豪”(Frascold)、“卡士妥”(Castel)、“莱富康”(Refcomp)、“都灵”(Dorin)
㈣ 给汽车空调加弗 外围的指针在哪算正常
①容积式压缩机按其结构来分,可分为往复活塞式(简称往复式)和回转活塞式(简称回转式)。
往复式和回转式在汽车空调器装置中均有不同程度的应用。往复式问世最早、是迄今仍普遍应用的一种机型,(例如:BOCK、BITZER压缩机),就往复式压缩机而言,技术上较为成熟,生产和使用上积累有丰富的经验,对材料的要求低,加工容易,造价低廉。它能适应较广泛的压力范围和制冷量范围,热效率高。不足之处是,由于活塞作往复运行,动力平衡性能差,限制了压缩机转速的提高,结构复杂,易损件多,维护工作量大。而回转式压缩机的工作容积旋转运动,无往复运动机构,所以动力平衡性能好,运转平稳、振动小,在其适宜的工作范围内具有较高的效率。另外回转式压缩机结构简单,体积小、重量轻、零件少、可靠性高。但回转式压缩机排量较小,一般用于制冷量较小的空调系统,如轿车空调系统。
② 汽车空调压缩机的驱动方式可根据其驱动源而分为两种类型,非独立式和独立式。
非独立式是由汽车的主发动来驱动压缩机,这种驱动方式适合于汽车主发动机有余烽而压缩机功率又不太大的车型,如小轿车、面包车、工程车等。这种驱动方式占用空间小,维护简便。但由于压缩机消耗主发动机部分动力,会影响车辆的加速性能,且空调装置的冷量会随车速的变化而变化。
独立式(或称辅助式),即另行配置发动机以驱动压缩机。由于另设专用驱动机,所以汽车行驶与空调装置的制冷效果之间互不影响。但这种驱动方式要占据一定的汽车空间,成本较高,噪声较大,而且辅助发动机的维护复杂化,所以应用范围不广。
无论是主机驱动还是辅机驱动,汽车空调压缩机都是采用开启式,即压缩机主轴的功率输入端伸出机体之外,通过皮带轮与驱动机连接。轴伸出机体部位装有轴封,以防制冷剂外泄。
5、汽车空调压缩机的特殊要求:
汽车运行的动态特征与多变的外界环境对汽车空调压缩机的性能和结构提出了一些特殊要求,表现在:
1、要有良好的低速性能,要求压缩机在汽车发动机低速和空载时有较大的制冷能力和较高的效率。
2、汽车高速行驶时输入功率低,这样不仅节省油耗,而且能降低发动机用于空调方面的功率消耗,提高汽车自身的动力性能。
3、压缩机要小型轻量化,这样可以节省汽车空间,安装位置方便,且节省材料和燃料的消耗。
4、要能经受恶劣运行条件的考验,有高度的可靠性和耐久性。在怠速时,汽车发动机舱内温度有时高达80℃冷凝压力高,就要求压缩机能承受高温及高压和有限的过载。汽车行驶在道路上总有颠簸振动,这也要求压缩机有良好的抗震性能,并把制冷剂的泄漏减小到最低程度。
5、对汽车不要产生不利的影响。要求压缩机运转平稳,振动小,噪音低,启停对发动机转速的影响小,启动力矩小。
㈤ 冷水机所使用的制冷压缩机有什么作用
压缩机,将低压气体提升为高压气体的一种从动的流体机械,是制冷系统的心脏。它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝(放热)→膨胀→蒸发 ( 吸热 ) 的制冷循环。
㈥ 汽车空调的关键零部件:汽车空调压缩机
在蒸气压缩式制冷装置中,压缩机是其主要部件之一。压缩机在压缩式制冷系统中的作用是将气态制冷剂加压然后送到冷凝器中冷却和冷凝。压缩机为制冷系统的运行提供了动力,因此要消耗功。
蒸气压缩式制冷系统使用的压缩机分为两种类型:一类为速度型,如离心式。另一类为容积型。在汽车空调制冷系统中,当前使用的都是容积式压缩机。 1、容积式压缩机按其结构来分,可分为往复活塞式(简称往复式)和回转活塞式(简称回转式)。
往复式和回转式在汽车空调器装置中均有不同程度的应用。往复式问世最早、是迄今仍普遍应用的一种机型,(例如:BOCK、BITZER压缩机),就往复式压缩机而言,技术上较为成熟,生产和使用上积累有丰富的经验,对材料的要求低,加工容易,造价低廉。它能适应较广泛的压力范围和制冷量范围,热效率高。不足之处是,由于活塞作往复运行,动力平衡性能差,限制了压缩机转速的提高,结构复杂,易损件多,维护工作量大。而回转式压缩机的工作容积旋转运动,无往复运动机构,所以动力平衡性能好,运转平稳、振动小,在其适宜的工作范围内具有较高的效率。另外回转式压缩机结构简单,体积小、重量轻、零件少、可靠性高。但回转式压缩机排量较小,一般用于制冷量较小的空调系统,如轿车空调系统。
2、汽车空调压缩机的驱动方式可根据其驱动源而分为两种类型,非独立式和独立式。
非独立式是由汽车的主发动来驱动压缩机,这种驱动方式适合于汽车主发动机有余烽而压缩机功率又不太大的车型,如小轿车、面包车、工程车等。这种驱动方式占用空间小,维护简便。但由于压缩机消耗主发动机部分动力,会影响车辆的加速性能,且空调装置的冷量会随车速的变化而变化。
独立式(或称辅助式),即另行配置发动机以驱动压缩机。由于另设专用驱动机,所以汽车行驶与空调装置的制冷效果之间互不影响。但这种驱动方式要占据一定的汽车空间,成本较高,噪声较大,而且辅助发动机的维护复杂化,所以应用范围不广。
无论是主机驱动还是辅机驱动,汽车空调压缩机都是采用开启式,即压缩机主轴的功率输入端伸出机体之外,通过皮带轮与驱动机连接。轴伸出机体部位装有轴封,以防制冷剂外泄。 汽车运行的动态特征与多变的外界环境对汽车空调压缩机的性能和结构提出了一些特殊要求,表现在:
1、要有良好的低速性能,要求压缩机在汽车发动机低速和空载时有较大的制冷能力和较高的效率。
2、汽车高速行驶时输入功率低,这样不仅节省油耗,而且能降低发动机用于空调方面的功率消耗,提高汽车自身的动力性能。
3、压缩机要小型轻量化,这样可以节省汽车空间,安装位置方便,且节省材料和燃料的消耗。
4、要能经受恶劣运行条件的考验,有高度的可靠性和耐久性。在怠速时,汽车发动机舱内温度有时高达80℃冷凝压力高,就要求压缩机能承受高温及高压和有限的过载。汽车行驶在道路上总有颠簸振动,这也要求压缩机有良好的抗震性能,并把制冷剂的泄漏减小到最低程度。
5、对汽车不要产生不利的影响。要求压缩机运转平稳,振动小,噪音低,启停对发动机转速的影响小,启动力矩小。 首先检查冷冻剂是否足够,可通过感觉干燥器的入口管路和出口管路之间的温度差来估量,或者通过歧管压力表进行检测。
其次要经常清洁出风口和驾驶室内的灰尘与污垢。这不仅有助汽车的美观,而且对驾驶员和乘客的身体健康是有益的。
第三,定期检查空调系统制冷剂的液面高度是否正常。检查液面高度的方法有好几种,但最常见的而且最简单的方法就是利用干燥器的窥视孔检查。
第四,检查压缩机皮带是否良好。如果皮带表面与皮带轮槽接触侧面光亮,并且启动空调时有“吱吱”的噪音,说明皮带打滑严重应更换皮带和皮带轮;如果皮带过松应给予调整,否则易使空调系统制冷不良
第五,检查空调系统软管和管接头是否有油迹。如发现渗漏,应及时向维修处咨询解决方法。
另外,汽车空调换季初次使用时,最好对空调系统进行杀菌除臭处理,这是因为空调系统长期“休假”会滋生真菌和霉菌,它不但使空气发出难闻的霉臭味,而且对车内人员的健康有害。这项工作可以到修理厂进行,也可以自购杀菌除臭专用喷剂自行处理。
㈦ 二氧化碳热泵热水器的研究现状
Yokoyama(2007)采用数值模拟的方法分析研究了外界环境温度对家用风冷式热泵热水器性能的影响。Cavallini(2005)对基本的两级压缩机中间冷却跨临界CO2系统(无回热器)进行了试验测试,并根据实验数据建立了热力学模型,分析优化了两级压缩机中间冷却跨临界CO2系统。通过在回气管路上增加回热器和在气体冷却器后增加后冷却器,可提高COP25%。Agrawal N(2007)同样对两级压缩机中间冷却跨临界CO2系统进行了优化设计,提出了三种优化方式并得出相应循环的最优高压压力和压缩机级间压力的计算公式。Skaugen等人对CO2制冷系统进行了计算机模拟,此模型可以对系统进行稳态模拟,也可以对系统进行优化设计。既可以用于制冷计算,也可以用于制热计算,而且空气和水都可以用做热源和热汇,这样包括了热水加热、空调、制冷和热泵系统。Wang和Hihara对CO2和R22热泵热水器的性能进行了研究,对每个部件和整个系统建立了模型。结果显示,CO2热泵热水器的COP值低于R22装置;但是当系统中加入回热器后,CO2的COP与R22 相当,只不过CO2压缩机的排气温度增加很快,并且最佳高压压力时所对应的制热量明显降低。Sarkar(2006)建立了跨临界CO2热泵系统同时制冷和制热时的稳态模型,得出了最优的COP和高压侧压力的关系式。Skaugen和Svensson对CO2跨临界热泵装置进行了动态模拟。他们首先开发了一个稳态模型,以便为动态模拟提供相关的初始数据,以及为CO2热泵装置的设计和操作进行优化。结果表明,两者在定性方面符合得很好。Pfafferott和Schmitz开发了CO2制冷系统用Modelica程序库模型,并对其进行了稳态和动态模拟,数据进行了比较结果显示符合得很好。
国内主要有上海交通大学的丁国良等人进行了CO2汽车空调的仿真研究。Ma?Y?T对膨胀机在跨临界两级压缩CO2制冷系统中的优化配置进行了研究。Yang JL对三种不同循环形式的带膨胀机跨临界两级压缩CO2制冷系统进行了热力学分析比较,得出了膨胀机在两级压缩CO2制冷系统中最优的配置形式。
CO2膨胀机构研究现状
1) 活塞式膨胀机
1994年,德国Dresden大学Heyl P教授和Quack博士开始研制开发跨临界CO2循环膨胀机。Heyl?P教授和Quack H博士(1999)开发出的第一代自由活塞膨胀压缩机,采用双作用对称式结构,具有两个膨胀缸和两个压缩缸,在CO2制冷实验台上的测试结果表明,与采用节流阀时的系统COP相比可提高30%。Nickl(2002)在发表的论文中介绍了第二代自由活塞式膨胀压缩机。通过增加一个双臂摇杆,使膨胀机活塞和压缩机活塞的运动速度不同,从而解决了第一代中膨胀机活塞和压缩机活塞必须同步运转的问题,减小了效率损失,其系统性能比第一代提高10%。
Nickl等(2003)开发的第三代自由活塞式膨胀压缩机重新采用了第一代的全压膨胀原理,但是通过三级膨胀的办法,提高膨胀功的回收,减小效率损失。Quack等(2004)对第三代膨胀压缩机样机成功进行了原理性实验。实验验证了膨胀机的控制机构完全可行,同时验证了CO2自身携带的润滑油就可满足机器的润滑需要,无需额外的润滑系统。Nickl(2005)给出了对样机进行进一步实验得出的P-V图,并估算出膨胀机等熵效率达到65%—70%,压缩机等熵效率超过90%。
Li等(2000)对CO2循环系统中不同的膨胀设备进行了热力分析,提出采用涡管和活塞式膨胀机来减小节流损失。BaekS(2002)将一商用的四冲程两缸发动机改造成活塞式膨胀机,吸、排气口的开闭采用快速电磁阀控制,实验测得膨胀机的等熵效率为10%左右, CO2制冷系统COP可提高7%—10%。BaekS(2005)对研制的活塞式膨胀机建立了详细的数学模型,并通过模型对样机进行了分析。
2) 涡旋式膨胀机
Preissner(2001)和HuffJ(2003)将两台半封闭式R134a涡旋压缩机改造成CO2膨胀机。样机Ⅰ的动盘盘高减小为1.7mm,样机Ⅱ的动盘高度则保持不变,仍为14mm。但是因为内部泄漏比较大,样机Ⅰ的最大等熵效率和容积效率仅为28%和40%。对于样机Ⅱ,由于膨胀机的工作容积大,减弱了内部泄漏的影响,其性能高于样机Ⅰ,最大等熵效率和容积效率分别为42%和68%。Westphalen D(2004)也在理论上对CO2涡旋膨胀机进行了研究,提出了CO2涡旋膨胀机的设计方案和功回收的方式,预测其泄漏损失约为20%,摩擦损失约为15%,总效率可达到72%左右。
3) 滚动转子式膨胀机
天津大学的魏东,查世彤,李敏霞,管海清等人先后对CO2滚动转子式膨胀机进行了开发和研究。魏东开发了第一代D3ER1.0型滚动活塞膨胀机。初步实验表明,膨胀机样机可以正常运转。查世彤在第一代的基础上开发了第二代D3ER2.0型滚动活塞膨胀机,通过增加滚针轴承减小膨胀机内部的摩擦,为防止外泄漏,将发电机和膨胀机合并为一体。李敏霞在D3ER2.0型膨胀机上进一步的改进成新型滑板滚动活塞膨胀机,型号D3ER2.1,将线密封改为面密封,理论计算泄漏可减小50%。此外,李敏霞又设计开发了D3ESW1.0摆动转子式膨胀机,将滚动活塞与滑板做成一体,以减小膨胀机内部泄漏环节。样机的测试结果表明,D3ER2.1型和D3ESW1.0型膨胀机效率均高于D3ER2.0型膨胀机分别为33%—44%和35%—47%。管海清则在前人研究的基础上,设计开发了摆动转子式膨胀压缩机,测试出了样机中膨胀机和压缩机的效率分别为30%—50%和60%—80%。
4) 其他膨胀机
伦敦City大学的Stosic(2002)在理论上对CO2双螺杆膨胀压缩机进行了研究,膨胀机和压缩机的转子通过共轴方式连接,并置于两个独立的腔中,从而避免工质的内部泄漏。通过该配置方式,膨胀压缩机的轴向负荷可以完全抵消,径向负荷较小20%。
Fukuta(2003)对滑片式膨胀机进行了研究,建立的数学模型模拟结果显示,泄漏是影响滑片式膨胀机性能的主要因素,传热的影响相对较小,模型预测滑片式膨胀机总效率在20%—40%,并随着转速的增加而增大。由滑片式油泵改造成的CO2滑片式膨胀机样机,在膨胀机进口压力9.1MPa,温度40℃,出口压力4.1MPa的工况下,总效率可达到43%。Fukuta(2006)研制了滑片式膨胀压缩机样机,其中压缩机部分作为CO2循环的二级压缩机。实验结果显示,压缩机部分的性能主要受压缩机前后压差和转速的影响。
英国MIEE?Driver公司对普通的滑片式膨胀压缩机进行了改进,并申请了专利。
5) 其它膨胀设备
Li DQ建立了喷射器等压混合模型,并在2006年进一步建立了两相流动喷射器和相应的CO2循环系统的模型。计算结果发现,主喷嘴膨胀过程的等熵效率为95%,但副喷嘴的等熵效率很低只有26%。
Tdell(2006)对CO2冲击式膨胀机进行了研究,目前这种膨胀机的效率非常低,喷管的等熵效率只有60%左后,能够回收的功仅占等熵膨胀功的20%—30%左右。
CO2压缩机的研究现状
1) 活塞式压缩机
1998年,Süβ和Kurse对Bock公司生产的开启式CO2活塞压缩机和Danfoss A/S公司的斜盘式CO2压缩机进行了研究。
Dorin公司在1998年IKK博览会上展示了开发的半封闭CO2活塞式压缩机,包括双缸单级和两级压缩机两种形式。瑞士苏黎世大学对应用在家用热水器上的半封闭小型无油活塞式CO2压缩机进行了研究开发。
Nesk等人对半封闭式两级CO2活塞式压缩进行了研究,测试结果显示转速1450 r/min下,效率和等熵效率最大分别达到0.8和0.6,且在低温工况下,其性能要优于单级压缩。
日本DENSO公司和静冈大学合作开发了活塞式CO2压缩机,对样机进行了测试并与理论计算结果进行了比较。研究发现活塞环的密封效果很好,但是存在通过气阀的反泄漏,这对相对较小的工作容积的压缩机效率影响很大。
国内上海交通大学的陈江平和上海易初通用合作开发了车用斜盘式CO2压缩机并进行了一系列的研究。
2) 滚动活塞式和摆动活塞式压缩机
日本三洋公司开发出了全封闭CO2双级滚动活塞式压缩机。这种气路设计,使得机壳内压力为一级排气压力,约为5-6MPa,减小了压缩机工作腔与机壳腔体之间的泄漏,有利于提高压缩机的效率,据报道其在50—80Hz的工作频率下,最高绝热效率可达到0.8以上。
日本大金公司设计开发了摆动转子式CO2压缩机。日本大金公司研究认为,由于CO2摆动转子压缩机的偏心距较小,虽然其工作压差很大,但设计强度要求与R410A压缩机相当。
Hubacher和Groll对一台全封闭两级压缩CO2转子式压缩机进行了实验测试,结果显示压比在1.5—5范围内,容积效率为0.78—0.9。Dreiman和Bunch开发了全封闭式CO2转子压缩机。Yokoyama等人对用于热泵系统的两级压缩级间补气滚动转子式CO2压缩机进行了开发并进行了实验研究,在高压比和低转速情况下,两级压缩型式的CO2压缩机在效率和供热能力方面均优于单级。
在国内,庆安制冷从2004年开始对滚动转子式CO2压缩机做了详细研究。主要工作集中在压缩机耐高压整体结构设计、轴承系统可靠性设计、供油系统设计、零件静态和动态强度设计、关键部件耐磨设计、压缩机运行带油量研究和分析、润滑油评估、零部件材料选取、电机设计、集中绕组直流电机拖动控制方案研究、控制器设计和制造工艺技术研究。在2008年开发出样机,样机容积效率达到0.75%-0.91%,并通过了可靠性评价实验。
3) 涡旋压缩机
日本DENSO公司研制了CO2涡旋压缩机用于CO2热泵热水器中。
日本松下公司在410A涡旋压缩机的基础上,对涡圈、壳体等部件进行了重新设计,开发了CO2涡旋压缩机样机。对样机的实验结果表明,压缩机容积效率和绝热效率随转速增大而增加,在34.6—48.2Hz工作频率范围内,容积效率在0.72—0.86之间,等熵效率为0.43—0.47。日本三菱重工也开发了用于CO2热泵热水器的涡旋压缩机,压缩机的绝热效率可达到0.76。Yano和Nakao等人还开发了大容量的CO2涡旋压缩机。
4) 滑片压缩机
美国马里兰大学和日本静冈大学合作对CO2滑片压缩机进行了理论研究,包括可行性、压缩腔内的温度和压力等关键参数分析、容积效率和指示效率的估算、滑片的受力情况等。研究发现,泄漏损失是影响压缩机效率的主要因素。另还对两级压缩滑片式CO2压缩机和滑片式膨胀压缩机进行了分析。
5) 螺杆压缩机
日本Maycom公司开发了CO2单级螺杆压缩机,设计的机组同时进行制冷和制热,压缩机排出的CO2首先用来加热热水,节流后用于制冷。英国City大学开发了用于CO2螺杆式膨胀压缩机。
CO2换热器的研究现状
1998年挪威NTNU的Pattersen开发了CO2系统紧凑换热器,利用多个平板组成传热管,平板被挤压成微通道。
Schonfeld和Kraus对超临界流体换热进行理论计算和实验研究,发现计算结果高于实验值,说明超临界不能用常规对流换热方法精确计算。Dang和Hiara也进行了上述工作,比较了多个关联式,并在Pilta方程的基础上建立了新的关联式,计算结果与试验结果误差为20%。东京大学的Hihara和Tanaka对高压下CO2流体沸腾做了大量的试验,由于在蒸发器内,流体涉及两相流换热,流体的流型对换热影响很大。挪威NTNU的Pattersen对CO2流体在微通道内低压沸腾流动流型进行试验研究,给出了流型图,同时对CO2蒸发流动压力降进行了测试。Grol和Kim都对CO2流体干度对水平管换热系数的影响进行了理论与试验研究,当CO2流体完全变为蒸汽,则换热器系数迅速下降,换热效果恶劣。Choi对CO2流体在垂直管道的蒸发换热情况进行了实验研究,发现低流体干度区,随干度的增大,换热系数增大,当干度超过某一值时,换热系数迅速下降。Kim等人对CO2多层微通道蒸发器进行理论和试验研究,所建理论模型与试验吻合较好。Kulkarmi等人对消除CO2微通道换热器各通道的干度不均有性方面进行了研究。