导航:首页 > 文件处理 > 压缩感知bp算法

压缩感知bp算法

发布时间:2024-08-01 09:45:30

‘壹’ 压缩感知理论基本介绍

姓名:王鑫磊

学号:21011110262

学院:通信工程学院

【嵌牛导读】压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。

【嵌牛鼻子】压缩感知,欠采样,稀疏恢复

【嵌牛提问】压缩感知相比奈奎斯特采样定律的主要突破是什么?

【嵌牛正文】

1.CS的初步理解

    CS是一个针对信号采样的技术,是在采样过程中完成数据压缩的过程。我们知道在对模拟信号按一定采样频率进行采样并得到数字信号的过程中,要想完整保留原始信号中的信息,采样频率必须大于信号中最高频率的2倍(奈奎斯特采样定理)。但Candes等人又提出了,如果信号在频域是稀疏的,那么它可以由远低于采样定理要求的采样点重建恢复。Nyquist定理中的采样为等间距采样,若采样频率低必然会引起混叠,如果不等间距采样呢?如果是随机采样呢?随机采样必然会发生频谱泄露,但泄露会均匀分布在整个频域且泄露值都较小,而最大的几个峰值可以通过设置阈值检测出来,从而有了恢复出原始信号的可能。

    图1展示了一原始的模拟信号在频域是稀疏的,仅由三个频率分量组成,为了得到数字信号,首先要在时域对其进行采样,根据压缩感知理论,可以在时域进行随机亚采样,之后得到的频谱会产生如图所示的泄露,但可以通过阈值检测求出原始信号的真实频率分量,从而恢复出原始信号。

2. CS的数学模型

    CS有两个前提条件:

假设:x是长度为N的原信号,稀疏度为k,它是未知的;Φ为测量矩阵,对应采样过程,也就是压缩的过程,如随机采样,是已知的;采样后的结果为:y=Φx,也是已知的;因此压缩感知问题是:在已知测量值y和测量矩阵Φ的基础上,求解原信号x的过程。然而一般信号x本身并不稀疏,需要在某种稀疏基上进行稀疏表示,即x=Ψs, 其中s为稀疏向量,即为所求的稀疏信号;Ψ为稀疏基矩阵,也叫稀疏变换矩阵,如傅里叶变换。

于是最终问题表示为:

                                                                                  y = ΦΨs = Θs                                                                                      (1)

已知y,Φ,Ψ,求s, Θ称为感知矩阵。感知矩阵需要满足约束等距原则(RIP),因此需要测量矩阵Φ和稀疏基Ψ满足不相关,即采样过程与稀疏过程不相关。Candes等人又找到了独立同分布的高斯随机测量矩阵可以称为普适的压缩感知测量矩阵,于是满足高斯分布的随机测量矩阵就成了CS最常用的观测矩阵。

3. CS的常用方法

已知(1)方程有无数解,因此需要通过增加约束来得到唯一解。方程是稀疏的,因此我们需要找到这个方程里所有解中最稀疏的内个就行了。

求解上述方程一般有三种思路:凸优化算法,贪婪算法,贝叶斯理论。CS常用算法有:

基追踪重构算法 (Basis Pursuit, BP):BP算法是一种凸优化方法。

正交匹配追踪算法 (OMP):OMP属于贪婪算法。

阈值迭代算法 : 包括软阈值迭代(ISTA)和迭代硬阈值(IHT)。ISTA的一种改进方法为快速阈值迭代(FISTA)。

【嵌牛参考】

[1]. Dandes, E. J. . “Near-optimal signal recovery from random projections.” Universal encoding strategies IEEE Transactions on Information Theory 52(2006).

[2]. Donoho, D. L. . “Compressed sensing.” IEEE Transactions on Information Theory 52.4(2006):1289-1306.

‘贰’ 有人在学压缩感知吗谁知道怎么用0范数或者L1范数最小化重构原始信号或者给我文献也行

用0范数或1范数解决cs重构归属一个数学问题,犹如给定你一个公式,利用这个公式或者说原理去做出很多的算法,cs重构本归属与对0范数的求解问题上的。
但0范数属于数学上一个NP_hard问题,是无法解决的,所以不能直接用求0范数的理论去做算法,从而提出一系列基于求0范数最小的贪婪类算法。如MP,OMP等算法。,这类算法中,最为基础的算是MP算法了。贪婪算法的速度较快,但是重构效果相对较差,需要的测量数也较多,不能高效地压缩信号,并且对测量矩阵的要求更高。但总的来说,应用范围广。
数学家同时发现,求解L1范数也可以逼近与0范数的效果,即把NP_hard问题转化为线性规划问题。所以现在有很多用求L1范数原理而创造了各类算法,最典型的是BP(基追踪)算法和梯度投影稀疏重构算法。这种算法重构效果很好,但是运算量大,复杂,应用于实际上可能不大。至少得改进其算法。
还有一大类算法,我不关注,不说了。
具体那些算法怎么实现,自己去网上下程序仿真一下吧。。。。

‘叁’ 什么是Dantzig selector

Dantzig selector是和OMP,BP等重构算法类似的,用于重构稀疏信号。你是在做压缩感知方面的么?

‘肆’ 谁懂利用CVX优化方面的知识,比如简单说一下CVX的凸优化原理,或者提供一些资料,非常感谢,有用再加分

[ book-optimization.rar ] - 这是一本讲解最优化的书籍,是全英文的。这是一部经典的外国教材,对最优化问题阐述的非常之精辟 [ Optimal.rar ] - 几个 凸优化 函数,用于解决非约束和带约束条件的凸优化问题 [ stanford_convex_optimization_book.rar ] - 国扰咐迹外的经典的有关于 凸优化 数学方面的教材,值得研缓并究有关优化方面的研究者学习 [ convex_analysis_foundation.zip ] - 凸分析基础 中文教材。简圆纯粹这方面的资料不多(多为 凸优化 之类),中文的书籍更难找,有用该方面知识的同行多多交流。 [ ConvexOptimization.rar ] - 凸优化 问题经常出现在许多不同的领域。全面介绍了主题,这本书展示了如何解决这些问题都可以高效率地详细数字。其重点是识别凸优化问题,然后找到解决他们最合适的技术。文本包含许多实例和作业练习,并会提出问题,如工程,计算机科学,数学,统计,金融,经济领域的学生,研究者和实践者。 [ cvx .zip ] - 斯坦福大学凸规划的程序,很经典,多次在IEEE的文章中出现 [ convex_optimization.rar ] - 凸优化 程序包,包含各种凸优化算法,可供方便调用. [ signal_decomposition_by_bp.rar ] - 基于基追踪(basis pursuit)对信号进行稀疏表示的算法 [ cvx .zip ] - 凸规划建模系统,包含用户手册,有助于学习压缩感知。 [ grads.rar ] - 最优化理论与算法(第2版)这本书中的课后作业。用C 实现的一些具体算法。

‘伍’ 稀疏度为1的信号,用压缩感知恢复原始信号,匹配追踪算法(MP)和正交匹配追踪算法(OMP)的结果一样吗

压缩感知(Compressed Sensing, CS)[1]理论具有全新的信号获取和处理方式,该理论解决了传统的Nyquist方法采样频率较高的问题,大大降低了稀疏信号精确重构所需的采样频率。
另外,CS理论在数据采集的同时完成数据压缩,从而节约了软、硬件资源及处理时间。
这些突出优点使其在信号处理领域有着广阔的应用前景!

阅读全文

与压缩感知bp算法相关的资料

热点内容
php如何抓取网页数据 浏览:640
计数器单片机 浏览:964
游戏aoi算法 浏览:844
phpmysqlint 浏览:912
怎么从appstore商城买东西 浏览:184
大秀直播平台源码 浏览:424
java视屏 浏览:934
电脑中如何给程序加密 浏览:240
java排序容器 浏览:942
职称证书在哪个app下载 浏览:362
四九算法算男女 浏览:659
javawindows8 浏览:496
2021世界程序员节 浏览:484
php翼支付 浏览:882
盈通服务器ip地址 浏览:789
3des算法的c语言实现 浏览:873
网上怎样购买服务器地址 浏览:813
新氧app都在哪个城市 浏览:731
十二大加密货币图片 浏览:315
数据库日志自动压缩 浏览:929