导航:首页 > 文件处理 > 离心压缩机

离心压缩机

发布时间:2022-01-16 04:34:46

㈠ 离心式压缩机有什么应用

离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。
离心式压缩机的应用:
离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。工业用高压离心压缩机的压力有(150~350)×10^5Pa的,海上油田注气用的离心压缩机压力有高达700×10^5Pa的。作为高炉鼓风用的离心式鼓风机的流量有大至7000m3/min,功率大的有52900KW的,转速一般在10000r/min以上。
有些化工基础原料,如丙烯、乙烯、丁二烯、苯等,可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式压缩机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式压缩机也是极为关键的设备。

㈡ 离心压缩机的压力比是什么意思,怎么定义的,有公式吗

气体压缩时 体积缩小而压力升高 在等温压缩过程中 不论压缩状态变化如何 其
状态参数始终符合下式关系 即
P 1 V 1 P 2 V 2 (4-3)
将上式移项整理得
P 2 / P 1 V l / V 2 (4-4)
式中 P 1 ——压缩机吸入压力 MPa P 2 ——压缩机排出压力 MPa V 1 ——吸入状态
体积流量 m 3 /min V 2 ——排出状态体积流量 m 3 /min
我们所说的压缩比 就是指压缩机排出压力与吸入压力之比 所以有时也称压力比或
压比 压缩比越大 离心式压缩机所需级数就越多 其功耗也越大

㈢ 离心式压缩机的工作原理

离心式压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。

更通俗地说,气体在流过离心式压缩机的叶轮时,高速运转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。显然,叶轮对气体做功是气体得以升高压力的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度密切相关的,圆周速度越大,叶轮对气体所作的功就越大。

㈣ 离心式压缩机的结构和原理

离心式压缩机的工作原理与结构 1. 工作原理离心式制冷压缩机有单级、双级和多级等多种结构型式。单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成,如图6-1所示。对于多级压缩机,还设有弯道和回流器等部件。一个工作叶轮和与其相配合的固定元件(如吸气室、扩压器、弯道、回流器或蜗壳等)就组成压缩机的一个级。多级离心式制冷压缩机的主轴上设置着几个叶轮串联工作,以达到较高的压力比。多级离心式制冷压缩机的中间级如图6-2所示。为了节省压缩功耗和不使排气温度过高,级数较多的离心式制冷压缩机中可分为几段,每段包括一到几级。低压段的排气需经中间冷却后才输往高压段。 1—进口可调导流叶片 2—吸气室 1—叶轮 2—扩压器 3—叶轮 4—蜗壳 5—扩压器 6—主轴 3—弯道 4—回流器图6-1所示的单级离心式制冷压缩机的工作原理如下:压缩机叶轮3旋转时,制冷剂气体由吸气室2通过进口可调导流叶片1进入叶轮流道,在叶轮叶片的推动下气体随着叶轮一起旋转。由于离心力的作用,气体沿着叶轮流道径向流动并离开叶轮,同时,叶轮进口处形成低压,气体由吸气管不断吸入。在此过程中,叶轮对气体做功,使其动能和压力能增加,气体的压力和流速得到提高。接着,气体以高速进入截面逐渐扩大的扩压器5和蜗壳4,流速逐渐下降,大部分气体动能转变为压力能,压力进一步提高,然后再引出压缩机外。对于多级离心式制冷压缩机,为了使制冷剂气体压力继续提高,则利用弯道和回流器再将气体引入下一级叶轮进行压缩,如图6-2所示。因压缩机的工作原理不同,离心式制冷压缩机与往复活塞式制冷压缩机相比,具有以下特点:①在相同制冷量时,其外形尺寸小、重量轻、占地面积小。相同的制冷工况及制冷量,活塞式制冷压缩机比离心式制冷压缩机(包括齿轮增速器)重5~8倍,占地面积多一倍左右。②无往复运动部件,动平衡特性好,振动小,基础要求简单。目前对中小型组装式机组,压缩机可直接装在单筒式的蒸发�0�6冷凝器上,无需另外设计基础,安装方便。③磨损部件少,连续运行周期长,维修费用低,使用寿命长。④润滑油与制冷剂基本上不接触,从而提高了蒸发器和冷凝器的传热性能。⑤易于实现多级压缩和节流,达到同一台制冷机多种蒸发温度的操作运行。⑥能够经济地进行无级调节。可以利用进口导流叶片自动进行能量调节,调节范围和节能效果较好。⑦对大型制冷机,若用经济性高的工业汽轮机直接带动,实现变转速调节,节能效果更好。尤其对有废热蒸汽的工业企业,还能实现能量回收。⑧转速较高,用电动机驱动的一般需要设置增速器。而且,对轴端密封要求高,这些均增加了制造上的困难和结构上的复杂性。⑨当冷凝压力较高,或制冷负荷太低时,压缩机组会发生喘振而不能正常工作。⑩制冷量较小时,效率较低。目前所使用的离心式制冷机组大致可以分成两大类:一类为冷水机组,其蒸发温度在-5℃以上,大多用于大型中央空调或制取5℃以上冷水或略低于0℃盐水的工业过程用场合;另一类是低温机组,其蒸发温度为-5~-40℃,多用于制冷量较大的化工工艺流程。另外在啤酒工业、人造干冰场、冷冻土壤、低温试验室和冷、温水同时供应的热泵系统等也可使用离心式制冷机组。离心式制冷压缩机通常用于制冷量较大的场合,在350~7000kW内采用封闭离心式制冷压缩机,在7000~35000kW范围内多采用开启离心式制冷压缩机。 2. 主要零部件的结构与作用由于使用场合的蒸发温度、制冷剂的不同,离心式制冷压缩机的缸数,段数和级数相差很大,总体结构上也有差异,但其基本组成零部件不会改变。现将其主要零部件的结构与作用简述如下。(1)吸气室 吸气室的作用是将从蒸发器或级间冷却器来的气体,均匀地引导至叶轮的进口。为减少气流的扰动和分离损失,吸气室沿气体流动方向的截面一般做成渐缩形,使气流略有加速。吸气室的结构比较简单,有轴向进气和径向进气两种形式,如图6-3所示。对单级悬臂压缩机,压缩机放在蒸发器和冷凝器之上的组装式空调机组中,常用径向进气肘管式吸气室(图6-3b)。但由于叶轮的吸入口为轴向的,径向进气的吸气室需设置导流弯道,为了使气流在转弯后能均匀地流入叶轮,吸气室转弯处有时还加有导流板。图中c所示的吸气室常用于具有双支承轴承,而且第一级叶轮有贯穿轴时的多级压缩机中。 a)轴向进气吸气室 b)径向进气肘管式吸气室 c)径向进气半蜗壳式吸气室(2)进口导流叶片 在压缩机第一级叶轮进口前的机壳上安装进口导流叶片可用来调节制冷量。当导流叶片旋转时,改变了进入叶轮的气流流动方向和气体流量的大小。转动导叶时可采用杠杆式或钢丝绳式调节机构。杠杆式如图6-4所示,进口导叶实际上是一个由若 1—小齿轮 2—齿圈 3—转动叶片 4—伺服电动机 5—波纹管 6—连杆 7—杠杆 8—手轮 1—导叶 2—从动齿轮 3—钢丝绳 4—过渡轮 5—主动齿轮干可转动叶片3组成的菊形阀,每个叶片根部均有一个小齿轮1,由大齿圈2带动,大齿圈是通过杠杆7和连杆6由伺服电动机4传动,也可用手轮8进行操作。图6-5为钢丝绳传动形式,由一个主动齿轮5通过钢丝绳3带动六个从动齿轮2转动,从而带动七个导叶1开启。为了使钢丝绳在固定轨道上运动,防止它从主动齿轮和从动齿轮上滑出,又安装有七个过渡轮4,主动齿轮根据制冷机组的调节信号,由导叶调节执行机构带动链式执行机构转动主动齿轮。进口导叶的材料为铸铜或铸铝,叶片具有机翼形与对称机翼形的叶形剖面,由人工修磨选配。进口导叶转轴上配有铜衬套,转轴与衬套间以及各连接部位应注入少许润滑剂,以保证机构转动灵活。(3)叶轮 叶轮也称工作轮,是压缩机中对气体做功的惟一部件。叶轮随主轴高速旋转后,利用其叶片对气体做功,气体由于受旋转离心力的作用以及在叶轮内的扩压流动,使气体通过叶轮后的压力和速度得到提高。叶轮按结构型式分为闭式、半开式和开式三种,通常采用闭式和半开式两种,如图6-6所示。闭式叶轮由轮盖、叶片和轮盘组成,空调用制冷压缩机大多采用闭式。半开式叶轮不设轮盖,一侧敞开,仅有叶片和轮盘,用于单级压力比较大的场合。有轮盖时,可减少内漏气损失,提高效率,但在叶轮旋转时,轮盖的应力较大,因此叶轮的圆周速度不能太大,限制了单级压力比的提高。半开式叶轮由于没有轮盖,适宜于承受离心惯性力,因而对叶轮强度有利,使叶轮圆周速度可以较高。钢制半开式叶轮圆周速度目前可达450~540m/s,单级压力比可达6.5。 a) 闭式 b)半开式离心式制冷压缩机的叶轮的叶片按形状可分为单圆弧、双圆弧、直叶片和三元叶片。空调用压缩机的单级叶轮多采用形状既弯曲又扭曲的三元叶片,加工比较复杂,精度要求高。当使用氟利昂制冷剂时,通常用铸铝叶轮,可降低加工要求。(4)扩压器 气体从叶轮流出时有很高的流动速度,一般可达200~300m/s,占叶轮对气体做功的很大比例。为了将这部分动能充分地转变为压力能,同时为了使气体在进入下一级时有较低的合理的流动速度,在叶轮后面设置了扩压器,如图6-2所示。扩压器通常是由两个和叶轮轴相垂直的平行壁面组成,如果在两平行壁面之间不装叶片,称为无叶扩压器;如果设置叶片,则称为叶片扩压器。扩压器内环形通道截面是逐渐扩大的,当气体流过时,速度逐渐降低压力逐渐升高。无叶扩压器结构简单,制造方便,由于流道内没有叶片阻挡,无冲击损失。在空调离心式制冷压缩机中,为了适应其较宽的工况范围,一般采用无叶扩压器。叶片扩压器常用于低温机组中的多级压缩机中。(5)弯道和回流器 在多级离心式制冷压缩机中,弯道和回流器是为了把由扩压器流出的气体引导至下一级叶轮。弯道的作用是将扩压器出口的气流引导至回流器进口,使气流从离心方向变为向心方向。回流器则是把气流均匀地导向下一级叶轮的进口,为此,在回流器流道中设有叶片,使气体按叶片弯曲方向流动,沿轴向进入下一级叶轮。在采用多级节流中间补气制冷循环中,段与段之间有中间加气,因此在离心式制冷压缩机的回流器中,还有级间加气的结构。图6-7给出了三种加气型式,其中b和c型对下一级叶轮入口气流均匀性不利,但可以减少轴向距离。 (6)蜗壳 蜗壳的作用是把从扩压器或从叶轮中(没有扩压器时)流出的气体汇集起来,排至冷凝器或中间冷却器。图6-8所示为离心式制冷压缩机中常用的一种蜗壳形式,其流通截面是沿叶轮转向(即进入气流的旋转方向)逐渐增大的,以适应流量沿圆周不均匀的情况,同时也起到使气流减速和扩压的作用。蜗壳一般是装在每段最后一级的扩压器之后,也有的最后级不用扩压器而将蜗壳直接装在叶轮之后,如图6-9所示。其中a为蜗壳前装有扩压器; a)蜗壳前为扩压器 b)蜗壳前为叶轮 c)不对称内蜗壳 b为蜗壳直接装在叶轮之后,这种蜗壳中气流速度较大,一般在蜗壳后再设扩压管,由于叶轮后直接是蜗壳,所以对叶轮的工作影响较大,增加了叶轮出口气流的不均匀性;c为不对称内蜗壳,是空调用单级机组中常用的形式,这种蜗壳是安置在叶轮的一侧,蜗壳的外径保持不变,其流通截面的增加是由减小内半径来达到的。蜗壳的横截面常见的有圆形、梯形等。在氟利昂冷水机组的蜗壳底部有泄油孔,水平位置设有与油引射器相连的高压气引管。各处用充气密封的高压气体均由蜗壳内引出。(7)密封 对于封闭型机组,无需采用防止制冷剂外泄漏的轴封部件。但在压缩机内部,为防止级间气体内漏,或油与气的相互渗漏,必须采用各种型式的气封和油封部件,对于开启式压缩机,还需设置轴封装置。离心式制冷压缩机中常用的密封型式有如下几种。 1)迷宫式密封 又称为梳齿密封,主要用于级间的密封,如轮盖与轴套的内密封及平衡盘处的密封。迷宫式密封由梳齿隔开的许多小室组成,它是利用梳齿形的曲径使气体向低压侧泄漏时受到多次节流膨胀降压(因为每经一道间隙和小室气体压力均有损失),从而达到减少泄漏的目的。迷宫密封的结构多种多样,常见的如图6-10所示。曲折密封优于平滑型,常用于轴套、平衡盘的密封,但制造较为复杂,轴向定位较严格。台阶型密封主要用于轮盖密封。 a)镶嵌曲折型密封 b)整体平滑型密封 c)台阶型密封 1—轴封壳体 2—弹簧 3、7—O形圈 4—静环座 5—静环 6—动环 2)机械密封 主要用于开启式压缩机中的转轴穿过机器外壳部位的轴端密封。机械密封的结构型式较多,主要有由一个静环和一个动环组成的单端面型,以及两个静环和一个动环,或两个静环和两个动环组成的双端面型。图6-11为一个动环6和两个静环5组成的双端面型机械密封。密封表面为静环与动环的接触面,弹簧2通过静环座4把静环压紧在动环上。O形圈3和7防止气体从间隙中泄漏。在压缩机工作时,轴封腔内通入压力高于气体压力约0.05~0.1MPa的润滑油,把压紧在动环两侧的静环推开一个间隙,形成密封油膜,既减少了摩擦损失,也起到了冷却和加强密封效果的作用。停机时油压下降,但恒压罐使轴封腔内尚维持一定油压,弹簧又把静环压紧在动环上,从而形成良好的停机密封。机械密封的优点是密封性能好,接近于绝对密封,且结构紧凑。但不足之处是易于磨损,寿命短,摩擦副的线速度不能太高,密封面比压也有一定的限制。 a)单片油封 b)充气油封 3)油封 图6-12a为简单的单片油封。单片油封装于轴承两侧,单片常用铝铜材料,直径间隙为0.2~0.4mm,大于轴承的径向间隙。图6-12b为充气密封。在空调用离心式制冷压缩机上,主要采用充气密封。它是在整体铸铝合金车削成的迷宫齿排中部,开有环形空腔,从压缩机的蜗壳内,引一股略高于油压的高压气体进入环形空腔中,高压气流从空腔内密封齿两端逸出,一端封油,另一端进入压缩机内。齿片的直径间隙一般取0.2~0.6mm。除上述主要零部件外,离心式制冷压缩机还有其它一些零部件。如:减少轴向推力的平衡盘;承受转子剩余轴向推力的推力轴承以及支撑转子的径向轴承等。为了使压缩机持续、安全、高效地运行,还需设置一些辅助设备和系统,如增速器、润滑系统、冷却系统、自动控制和监测及安全保护系统等。 -----这里也有: http://bbs.hcbbs.com/viewthread.php?tid=136088

㈤ 为什么离心式压缩机一般转速都很高

当然详细地说还有动能转变为静压能,实际上气体通过叶轮时,叶片对气体所做的功是与叶轮外缘的圆周速度m成正比,而m是与叶轮的转速成正比,设D为叶轮的外缘直径,n为转速,则有;m=πDn60,因此转速越高,气体获得的能量越多,压力就提高得越多,同时若要求m不变,只要提高n,D就可以减少,可使压缩机的重量和体积都减少,故设计时,一般只要机械强度无问题,转速尽可能设计得高些。

㈥ 离心式压缩机的安装工艺

离心压缩机的整体安装
安装人员要熟悉安装现场和周边环境,熟悉所要安装设备的图纸及安装流程。安装前首先按照装箱单清点设备部件,确认所需部件齐全;所需专用工具齐备。安装过程一般按下列顺序进行。
一、机组就位、找平找正
(1)机组就位前离心压缩机的底座必须清除油垢、油漆、铸砂、铁锈等,机器的法兰孔应加设盲板,以免脏物掉人。
(2)位于机器下部与机器相连接的设备,应试压检验合格后先吊装就位,并初步找正。
(3)机组就位前必须首先确定供机组找平找正的基准机器,先调整固定基准机器,再以其轴线为准,调整固定其余机器。墓准机器的确定一般按以下要求:
①设计或制造方规定的安装基准机器;
②以重量大,调整困难的机器为安装基准机器;
③机器多、轴系长时,宜选安装在中间位置的机器为基准安装机器,以便于整个机组的调整;
④条件相同时,优先选择转速高的机器为基准安装机器,可节省调整时间。
(4)机器就位。先把金属底板放在水泥基础上,压缩机支腿放在底板的支架上。底板设有水平调节螺钉(见图7-25),利用它调节好底板和基础之间的距离,一般约l00mm,以供二次灌浆用。利用水平调节螺钉将底板找平。底板用地脚螺栓固定在基础上,但先不上紧。
(5)机组中心线应与基础中心线一致,其偏差不应大于5mm,基准机器的安装标高,其偏差不应大于3mm。
(6)纵横向水平以轴承座、下机壳中分面或制造厂给出的专门加工面为准进行测量。机组纵向水平度的允许偏差:基准机器的安装基准部位应为0.02一0. 05mm/m,其余机器必须保证联轴器对中要求。横向水平度的偏差不应大于0.lOmm/m。
二、机组联轴器对中
(1)离心压缩机转速高,对联轴器的对中要求严。联轴器表面应光滑,无毛刺、裂纹等缺陷。
(2)采用百分表测量时,表的精度必须合格,表架应结构坚固,重量轻,刚性大,安装牢固,无晃动。使用时应测量表架挠度,以校正测量结果。
(3)调整垫片应清洁、平整、无折边、毛刺等。查明机组轴端之间的距离符合图纸要求。螃制造厂提供的找正图表或冷对中数据进行对中。
三、基础二次灌浆
(1)基础二次灌浆前应检查和复测联轴器的对中偏差和端面轴向间距是否符合要求。复测机组各部滑键、立销、猫爪、联系螺栓的间隙值。检查地脚螺栓是否全部按要求紧固。用0.25-0.5kg的手锤敲击检查垫铁,应无松动。垫铁层之间用0. 05mm的塞尺检查,,同一断施两侧塞人深度之和不得超过垫铁边长(或宽)的1/4。垫铁两侧层间用定位焊固定。机组检查复测合格后,必须在24h内进行灌浆,否则,应再次进行复测。
(2)二次灌浆前,基础表面必须清除油污,用水冲洗干净并保持湿润12h以上,灌浆时应清除表面积水。灌浆层厚度一般为70mm,外模板与底座外缘的间距不宜小于60mm,模板高度应略高于底座下平面。用无收缩或微膨胀混凝土灌浆时,其标号应高于基础标号1-2级,且不得低于250号。灌浆的环境温度应在5℃以上,否则,砂浆可用60℃以下温水搅拌和掺人一定数量的早强剂。灌完后应采取保温措施。灌浆应在安装人员的配合和监督下连续进行,一次灌完。灌浆时应不断捣固,使混凝土与基础紧密贴合并充满各部位。二次灌浆后要认真进行养护。
四、找正
(1)再次检查底板水平,一般要求达到0. 02mm/m的水平精度,如果未达到精度要求,可以通过调整图7一25中支承板5与底板间的垫片来调整。

(2)对各缸转子进行最终找正。通过调节压缩机支腿和底板上的支架之间的垫片使转子在垂直面上对中,而水平面上的找正则主要依靠在支腿旁的顶丝将机器左右移动来达到。
当找正结束,在底板下方再次灌浆(正常水泥沙浆混合物),并用由水泥:砂子=1:2混合的特殊砂浆抹面,还可进一步用油漆或树脂进行保护,机器最终就位。
(3)管道连接和销定。只有在找正合格之后,才能将进、排气连接管接到机器上。接管要用支架来支持本身重量,气体温度高的接管应设膨胀节,以防止管子热膨胀推动汽缸,破坏对中。在把紧汽缸与进、排气接管的连接螺栓时,应在基础上适当位置或者在不与机器相连的结构上架上百分表,使百分表触杆顶在压缩机身上,检尾井应少于80%
(6)用压铅法或百分表抬轴法测量径向轴承间隙并作好记录。
(7)可倾瓦的瓦块应均匀,各瓦块间厚度差应不大于0. 0l mm。装配后瓦块能自由摆动,不得有卡涩现象。
(8)厚壁、可倾瓦口接触应严密。自由状态时,用塞尺检查,间隙不得大于0.O8mm。
(9)推力轴承的外观检查也应符合要求,其表面粗糙度Ra不应大于0.4mm;推力瓦块的厚度应均匀一致,同组瓦块的厚度差不应大于0. Olmm。
(10)推力轴承调整垫应平整,各处厚度差应小于0.01~,数量不应超过2块;推力轴承与推力盘应均匀接触,用涂色法检查,其接触面积不应小于75%。
(11)测量推力轴承间隙,应在上下两半推力瓦、定位环和上下两半瓦套紧固后进行。推力轴承的间隙应符合机组的技术要求。
五、机壳与隔板的安装
多级水平剖分式离心压缩机的机壳是上、下两个整体铸钢件,各级之间由可拆的隔板相隔离,而机壳安装在底座上。它们的安装和检查顺序如下:
1.机壳的检查与安装
(1)机壳安装前应仔细进行外观检查,不得有裂纹、夹渣、气孔、铸砂和损伤等缺陷,必要时应进行无损探伤检查。
(2)壳体的水平或垂直剖分面应完好无损,接合面自由结合时间隙不应大于0.08mm;或每隔一个螺栓拧紧后间隙不应大于0.03mm。
(3)机壳安装在底座支承面上。底座支承面与机壳支承面应紧密结合,自由状态下宜用0.03mm的塞尺检查,不能塞人为合格。
(4)轴承箱内的铸砂、杂物等应清理千净。轴承座底面与底座支承面应严密接触,应用0.05mm的塞尺检查,不能塞人为合格。
2.隔板的检查与安装
(1)板铸件不得有裂纹、气孔、未浇满和夹层等缺陷,扩压器和回流器的导流叶片应光滑无损。
(2)隔板装进机壳时,应自由滑人槽中,无卡涩现象,隔板装配后,隔板与隔板及隔板与机壳中心的偏差应小于0.05mm。
(3)上下两隔板的结合面应接触良好,结合面的局部间隙应小于0. O8mm,固定隔板的销子、定位键和对应孔槽的配合应符合技术文件的规定。
(4)隔板的吊装应使用专用工具。隔板最终装配时,应在各结合面处涂以干石墨粉或其他防咬合剂。
六、转子安装
叶轮、平衡盘(鼓)是采用过盈热套方法装在主轴上的,并且每装一对叶轮还要对转子进行一次动平衡试验,最后整个转子安装完毕,转子的动平衡试验必须合格。转子由制造厂安装并检验合格后,经装箱运至施工场地。施工单位必须做以下检查后,才能进行离心压缩机的组装。
1.转子的吊装和检查
(1)转子的吊装应使用专用工具。吊装过程必须平稳可靠,转子必须保持水平状态,轻起轻落,不能发生碰撞。
(2)检查并清洗转子,应无锈蚀、损伤、变形、裂纹等缺陷。
(3)测量转子轴颈、各级叶轮外径、叶轮口环、气封、主密封、油封、联轴器等部位的径向跳动值及轮盘进口外圆端面、叶轮出口端面、推力盘工作面外圆端面等部位的轴向跳动值,应符合要求。
(4)主轴颈、浮环密封或机械密封配合处及径向探头监测区轴的表面粗糙度不应大于0.4-0.8,推力盘的表面粗糙度不应大于0.4。
(5)转子就位后,应测定转子总窜量,并按技术文件要求,调整轴向位置,装推力轴承,使各叶轮工作通道对称于扩压器通道,允许偏差宜为士I MM.
2.联轴器的装配
(1)联轴器装配之前应进行清洗和检查,应无锈蚀、裂纹、毛刺和损伤等缺陷。
(2)测量轮毅孔和轴的直径、锥度,其过盈值和锥度应符合技术文件的规定。
(3)检查轮毅孔和轴的表面粗糙度,不应大于0.8。
(4)无键联轴器宜用液压法装配,操作方法、装配的压力和推进量必须符合技术文件的规定。装配前宜用涂色法检查轮毅孔和轴的接触情况,能推进部分的接触面积应大于80%。
(5)过盈加键联轴器,宜用热装。加热温度和方法取决于联轴器的尺寸和过盈量。加热温度宜为180一230℃。
七、密封
离心压缩机常用的密封有迷宫密封、浮环油膜密封、气膜密封、机械密封等。
八、机壳的闭合
离心压缩机的上、下机壳和转子组装完毕并检查合格后,可进行离心压缩机的最后组装。转子装入机壳内,机壳闭合。
机壳闭合前必须认真检查,并作好相应的安装记录。检查项目包括:
(1)转子中心位置、水平度、主要部位的跳动值、径向轴承和推力轴承各部间隙等均应符合规定要求。
(2)机壳、隔板、密封装置及机壳的水平度、剖分面接触状况等均符合要求。
(3)机壳内的紧固定或定位螺栓应拧紧、销牢、支承滑销系统组装符合要求。
(4)检查确认机壳内部清洁,无异物。
2.机壳的闭合
(1)在机壳剖面上均匀涂抹密封剂。
(2)装上导向杆,将上机壳平稳地吊起,缓慢下落,使机壳准确地闭合。安装定位销,检查轴封部位不得有错口现象。盘动转子应转动灵活,无异常声响。
(3)机壳螺栓应无毛刺、损伤、螺栓螺纹部位应涂防咬合剂。螺栓的紧固应从机壳两侧的中部开始,按左右对称分两步进行:先用50%-60%的额定力矩拧紧,再用1000的额定力矩紧固。螺栓的紧固力矩应符合规定。

㈦ 离心式空压机的工作原理

离心式空气压缩机的工作原理
离心式空气压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。
离心式空气压缩机的优点
离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。
1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。
2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。
3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。
4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。
注意事项
1、空气压缩机应停放在远离蒸汽、煤气迷漫和粉尘飞扬的地方。进气管应装有过滤装置。空气压缩机就位后,应用垫块对称楔紧。
2、经常保持贮存罐外部的清洁。禁止在贮气罐附近进行焊接或热加工。贮气罐每年应作水压试验一次,试验压力应为工作压力1.5倍。气压表、安全阀应每年作一次检验。
3、操作人员应经专门培训,必须全面了解空气压缩机及附属设备的构造、性能和作用,熟悉运转操作和维护保养规程。
4、操作人员应穿好工作服,女同志应将发辫塞入工作帽内。严禁酒后操作,不得从事与运行无关的事情,不得擅自离开工作岗位,不得擅自决定非本机操作人员代替工作。
5、空气压缩机起动前,按规定做好检查和准备工作,注意打开贮气罐的所有阀门。柴油机启动后必须施行低速、中速、额定转速的加热运转,注意各仪表读数是否正常后,方可带负荷运转。空压机应逐渐增加负荷启动,各部分正常后才可全负荷运转。

㈧ 离心式压缩机都有哪些优缺点

离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。
1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。
2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。
3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。
4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。
离心式压缩机的缺点:
1、离心式压缩机还不适用于气量太小及压比过高的场合。
2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。
3、离心式压缩机效率一般比活塞式压缩机低。
离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。离心式压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。

㈨ 离心机就是压缩机吗

离心机不是压缩机。
离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。离心机主要用于将悬浮液中的固体颗粒与液体分开,或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。
压缩机(compressor),将低压气体提升为高压气体的一种从动的流体机械,是制冷系统的心脏。它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝(放热)→膨胀→蒸发 ( 吸热 ) 的制冷循环。
直线压缩机,是采用磁悬浮原理和螺旋环流体力学结构,对气体进行压缩,为制冷提供动力。
压缩机分活塞压缩机,螺杆压缩机,离心压缩机,直线压缩机等。活塞压缩机一般由壳体、电动机、缸体、活塞、控制设备 (启动器和热保护器) 及冷却系统组成。冷却方式有油冷和风冷,自然冷却三种。直线压缩机没有轴,没有缸体、密封和散热结构。
一般家用冰箱和空调器的压缩机是以单相交流电作为电源,它们的结构原理基本相同,但两者使用的制冷剂有所不同。

㈩ 求助(离心泵和离心压缩机有何本质区别)

离心泵和压缩机的区别是打液体和气体的,关键的区别是叶轮的的角度不一样,是由气体或者液体的分子量决定的,另外三楼说的最后一句也不对,压缩机的叶轮不是一级一级减少的是根据气体在缸内的具体状况来决定的,可以找个实际情况来看一下就知道了。

阅读全文

与离心压缩机相关的资料

热点内容
比泽尔压缩机下载 浏览:420
深圳压缩机制造公司 浏览:882
如何给u盘单独文件加密码 浏览:284
恒温机故障源码 浏览:418
如何打开管家婆服务器支持者 浏览:266
安卓手机自带浏览器有什么用 浏览:532
老板咨询阿里云还是独立服务器 浏览:814
诺基亚手机app哪里下载 浏览:520
看比赛用哪个app 浏览:976
如何评价如故app 浏览:151
建立表结构的命令 浏览:581
安卓文件为什么苹果手机打不开 浏览:84
东奥轻4可以在哪个app做题 浏览:165
金融科技加密卡 浏览:837
程序员那么开一共有多少集 浏览:982
面试程序员被问数学问题怎么办 浏览:93
背大学英语的app哪个最好 浏览:721
哪个app买的衣服好 浏览:471
天刀以前玩过的服务器忘了怎么办 浏览:215
单片机基础代码解读 浏览:237