‘壹’ 什么是impala,如何安装使用Impala
一、Impala简介
Cloudera Impala对你存储在Apache Hadoop在HDFS,HBase的数据提供直接查询互动的SQL。除了像Hive使用相同的统一存储平台,Impala也使用相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue Beeswax)。Impala还提供了一个熟悉的面向批量或实时查询和统一平台。
二、Impala安装
1.安装要求
(1)软件要求
Red Hat Enterprise linux (RHEL)/CentOS 6.2 (64-bit)
CDH 4.1.0 or later
Hive
MySQL
(2)硬件要求
在Join查询过程中需要将数据集加载内存中进行计算,因此对安装Impalad的内存要求较高。
2、安装准备
(1)操作系统版本查看
>more/etc/issue
CentOSrelease 6.2 (Final)
Kernel \ron an \m
(2)机器准备
10.28.169.112mr5
10.28.169.113mr6
10.28.169.114mr7
10.28.169.115mr8
各机器安装角色
mr5:NameNode、ResourceManager、SecondaryNameNode、Hive、impala-state-store
mr6、mr7、mr8:DataNode、NodeManager、impalad
(3)用户准备
在各个机器上新建用户hadoop,并打通ssh
(4)软件准备
到cloudera官网下载:
Hadoop:
hadoop-2.0.0-cdh4.1.2.tar.gz
hive:
hive-0.9.0-cdh4.1.2.tar.gz
impala:
impala-0.3-1.p0.366.el6.x86_64.rpm
impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
impala-server-0.3-1.p0.366.el6.x86_64.rpm
impala-shell-0.3-1.p0.366.el6.x86_64.rpm
impala依赖包下载:
4、hadoop-2.0.0-cdh4.1.2安装
(1)安装包准备
hadoop用户登录到mr5机器,将hadoop-2.0.0-cdh4.1.2.tar.gz上传到/home/hadoop/目录下并解压:
tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz
(2)配置环境变量
修改mr5机器hadoop用户主目录/home/hadoop/下的.bash_profile环境变量:
exportjava_HOME=/usr/jdk1.6.0_30
exportJAVA_BIN=${JAVA_HOME}/bin
exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export JAVA_OPTS="-Djava.library.path=/usr/local/lib-server -Xms1024m -Xmx2048m -XX:MaxPermSize=256m -Djava.awt.headless=true-Dsun.net.client.defaultReadTimeout=600
00-Djmagick.systemclassloader=no -Dnetworkaddress.cache.ttl=300-Dsun.net.inetaddr.ttl=300"
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=$HADOOP_HOME
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
export PATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(3)修改配置文件
在机器mr5上hadoop用户登录修改hadoop的配置文件(配置文件目录:hadoop-2.0.0-cdh4.1.2/etc/hadoop)
(1)、slaves :
添加以下节点
mr6
mr7
mr8
(2)、hadoop-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
export HADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(3)、core-site.xml :
fs.default.name
hdfs://mr5:9000
The name of the defaultfile system.Either the literal string "local" or a host:port forNDFS.
true
io.native.lib.available
true
hadoop.tmp.dir
/home/hadoop/tmp
A base for other temporarydirectories.
(4)、hdfs-site.xml :
dfs.namenode.name.dir
file:/home/hadoop/dfsdata/name
Determines where on thelocal filesystem the DFS name node should store the name table.If this is acomma-delimited list of directories,then name table is replicated in all of thedirectories,for rendancy.
true
dfs.datanode.data.dir
file:/home/hadoop/dfsdata/data
Determines where on thelocal filesystem an DFS data node should store its blocks.If this is acomma-delimited list of directories,then data will be stored in all nameddirectories,typically on different devices.Directories that do not exist areignored.
true
dfs.replication
3
dfs.permission
false
(5)、mapred-site.xml:
maprece.framework.name
yarn
maprece.job.tracker
hdfs://mr5:9001
true
maprece.task.io.sort.mb
512
maprece.task.io.sort.factor
100
maprece.rece.shuffle.parallelcopies
50
maprece.cluster.temp.dir
file:/home/hadoop/mapreddata/system
true
maprece.cluster.local.dir
file:/home/hadoop/mapreddata/local
true
(6)、yarn-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(7)、yarn-site.xml:
yarn.resourcemanager.address
mr5:8080
yarn.resourcemanager.scheler.address
mr5:8081
yarn.resourcemanager.resource-tracker.address
mr5:8082
yarn.nodemanager.aux-services
maprece.shuffle
yarn.nodemanager.aux-services.maprece.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler
yarn.nodemanager.local-dirs
file:/home/hadoop/nmdata/local
thelocal directories used by the nodemanager
yarn.nodemanager.log-dirs
file:/home/hadoop/nmdata/log
thedirectories used by Nodemanagers as log directories
(4)拷贝到其他节点
(1)、在mr5上配置完第2步和第3步后,压缩hadoop-2.0.0-cdh4.1.2
rm hadoop-2.0.0-cdh4.1.2.tar.gz
tar zcvf hadoop-2.0.0-cdh4.1.2.tar.gz hadoop-2.0.0-cdh4.1.2
然后将hadoop-2.0.0-cdh4.1.2.tar.gz远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr6:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr7:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr8:/home/hadoop/
(2)、将mr5机器上hadoop用户的配置环境的文件.bash_profile远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/.bash_profile hadoop@mr6:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr7:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr8:/home/hadoop/
拷贝完成后,在mr5、mr6、mr7、mr8机器的/home/hadoop/目录下执行
source.bash_profile
使得环境变量生效
(5)启动hdfs和yarn
以上步骤都执行完成后,用hadoop用户登录到mr5机器依次执行:
hdfsnamenode -format
start-dfs.sh
start-yarn.sh
通过jps命令查看:
mr5成功启动了NameNode、ResourceManager、SecondaryNameNode进程;
mr6、mr7、mr8成功启动了DataNode、NodeManager进程。
(6)验证成功状态
通过以下方式查看节点的健康状态和作业的执行情况:
浏览器访问(本地需要配置hosts)
5、hive-0.9.0-cdh4.1.2安装
(1)安装包准备
使用hadoop用户上传hive-0.9.0-cdh4.1.2到mr5机器的/home/hadoop/目录下并解压:
tar zxvf hive-0.9.0-cdh4.1.2
(2)配置环境变量
在.bash_profile添加环境变量:
exportHIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${HIVE_HOME}/bin
exportHIVE_CONF_DIR=$HIVE_HOME/conf
exportHIVE_LIB=$HIVE_HOME/lib
添加完后执行以下命令使得环境变量生效:
..bash_profile
(3)修改配置文件
修改hive配置文件(配置文件目录:hive-0.9.0-cdh4.1.2/conf/)
在hive-0.9.0-cdh4.1.2/conf/目录下新建hive-site.xml文件,并添加以下配置信息:
hive.metastore.local
true
javax.jdo.option.ConnectionURL
jdbc:mysql://10.28.169.61:3306/hive_impala?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName
hadoop
javax.jdo.option.ConnectionPassword
123456
hive.security.authorization.enabled
false
hive.security.authorization.createtable.owner.grants
ALL
hive.querylog.location
${user.home}/hive-logs/querylog
(4)验证成功状态
完成以上步骤之后,验证hive安装是否成功
在mr5命令行执行hive,并输入”show tables;”,出现以下提示,说明hive安装成功:
>hive
hive>show tables;
OK
Time taken:18.952 seconds
hive>
6、impala安装
说明:
(1)、以下1、2、3、4步是在root用户分别在mr5、mr6、mr7、mr8下执行
(2)、以下第5步是在hadoop用户下执行
(1)安装依赖包:
安装mysql-connector-java:
yum install mysql-connector-java
安装bigtop
rpm -ivh bigtop-utils-0.4+300-1.cdh4.0.1.p0.1.el6.noarch.rpm
安装libevent
rpm -ivhlibevent-1.4.13-4.el6.x86_64.rpm
如存在其他需要安装的依赖包,可以到以下链接:
http://mirror.bit.e.cn/centos/6.3/os/x86_64/Packages/进行下载。
(2)安装impala的rpm,分别执行
rpm -ivh impala-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-server-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-shell-0.3-1.p0.366.el6.x86_64.rpm
(3)找到impala的安装目录
完成第1步和第2步后,通过以下命令:
find / -name impala
输出:
/usr/lib/debug/usr/lib/impala
/usr/lib/impala
/var/run/impala
/var/log/impala
/var/lib/alternatives/impala
/etc/default/impala
/etc/alternatives/impala
找到impala的安装目录:/usr/lib/impala
(4)配置Impala
在Impala安装目录/usr/lib/impala下创建conf,将hadoop中的conf文件夹下的core-site.xml、hdfs-site.xml、hive中的conf文件夹下的hive-site.xml复制到其中。
在core-site.xml文件中添加如下内容:
dfs.client.read.shortcircuit
true
dfs.client.read.shortcircuit.skip.checksum
false
在hadoop和impala的hdfs-site.xml文件中添加如下内容并重启hadoop和impala:
dfs.datanode.data.dir.perm
755
dfs.block.local-path-access.user
hadoop
dfs.datanode.hdfs-blocks-metadata.enabled
true
(5)启动服务
(1)、在mr5启动Impala state store,命令如下:
>GLOG_v=1 nohup statestored-state_store_port=24000 &
如果statestore正常启动,可以在/tmp/statestored.INFO查看。如果出现异常,可以查看/tmp/statestored.ERROR定位错误信息。
(2)、在mr6、mr7、mr8启动Impalad,命令如下:
mr6:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr6 -ipaddress=10.28.169.113 &
mr7:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr7 -ipaddress=10.28.169.114 &
mr8:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr8 -ipaddress=10.28.169.115 &
如果impalad正常启动,可以在/tmp/impalad.INFO查看。如果出现异常,可以查看/tmp/ impalad.ERROR定位错误信息。
(6)使用shell
使用impala-shell启动Impala Shell,分别连接各Impalad主机(mr6、mr7、mr8),刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]> connect mr6:21000
[mr6:21000] >refresh
[mr6:21000]>connectmr7:21000
[mr7:21000]>refresh
[mr7:21000]>connectmr8:21000
[mr8:21000]>refresh
(7)验证成功状态
使用impala-shell启动Impala Shell,分别连接各Impalad主机,刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]> connect mr6:21000
[mr6:21000]>refresh
[mr6:21000] >show databases
default
[mr6:21000] >
出现以上提示信息,说明安装成功。
‘贰’ yarn jar命令和hadoop jar命令有什么区别
int year,month,day;
while(1)
{
printf("\n请选择你所需要的服务:\n");
printf("\n输入1求某个日期对应的星期");
printf("\n输入2结束程序\n");
scanf("%d",&option);
switch(option)
‘叁’ 如何初始化,启动及停止Hadoop集群
第一步,在Hadoop01机器上启动Zookeeper:
[root@hadoop01 ~]# /root/apps/zookeeper/bin/zkServer.sh start
第二步,在Hadoop02机器上启动Zookeeper:
[root@hadoop02 ~]# /root/apps/zookeeper/bin/zkServer.sh start
第三步,在Hadoop03机器上启动Zookeeper:
[root@hadoop03 ~]# /root/apps/zookeeper/bin/zkServer.sh start
启动Zookeeper之后,可以分别在3台机器上使用如下命令查看Zookeeper的启动状态:
/root/apps/zookeeper/bin/zkServer.sh status
第四步,在Hadoop01机器上启动HDFS:
[root@hadoop01 ~]# /root/apps/hadoop/sbin/start-dfs.sh
第五步,在Hadoop01机器上启动YARN:
[root@hadoop01 ~]# /root/apps/hadoop/sbin/start-yarn.sh
第六步,在Hadoop02机器上单独启动一个ResourceManager:
(注意这里使用的是“yarn-daemon.sh”命令,而不是“hadoop-daemon.sh”,不知道为什么使用“hadoop-daemon.sh”无法启动ResourceManager)
[root@hadoop02 ~]# /root/apps/hadoop/sbin/yarn-daemon.sh start resourcemanager!
‘肆’ 简述启动和关闭Hadoop集群的方法
摘要 1. 格式化NameNode
‘伍’ 大数据:Hadoop入门
什么是大数据:
(1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等。这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB).
2.大数据的特点:
(1.)体量巨大。按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级。
(2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,地理位置信息,交易数据,社交数据等。
(3.)价值密度低。有价值的数据仅占到总数据的一小部分。比如一段视屏中,仅有几秒的信息是有价值的。
(4.)产生和要求处理速度快。这是大数据区与传统数据挖掘最显着的特征。
3.除此之外还有其他处理系统可以处理大数据。
Hadoop (开源)
Spark(开源)
Storm(开源)
MongoDB(开源)
IBM PureDate(商用)
Oracle Exadata(商用)
SAP Hana(商用)
Teradata AsterData(商用)
EMC GreenPlum(商用)
HP Vertica(商用)
注:这里我们只介绍Hadoop。
二:Hadoop体系结构
Hadoop来源:
Hadoop源于Google在2003到2004年公布的关于GFS(Google File System),MapRece和BigTable的三篇论文,创始人Doug Cutting。Hadoop现在是Apache基金会顶级项目,“
Hadoop”一个虚构的名字。由Doug Cutting的孩子为其黄色玩具大象所命名。
Hadoop的核心:
(1.)HDFS和MapRece是Hadoop的两大核心。通过HDFS来实现对分布式储存的底层支持,达到高速并行读写与大容量的储存扩展。
(2.)通过MapRece实现对分布式任务进行处理程序支持,保证高速分区处理数据。
3.Hadoop子项目:
(1.)HDFS:分布式文件系统,整个Hadoop体系的基石。
(2.)MapRece/YARN:并行编程模型。YARN是第二代的MapRece框架,从Hadoop 0.23.01版本后,MapRece被重构,通常也称为MapRece V2,老MapRece也称为 MapRece V1。
(3.)Hive:建立在Hadoop上的数据仓库,提供类似SQL语音的查询方式,查询Hadoop中的数据,
(5.)HBase:全称Hadoop Database,Hadoop的分布式的,面向列的数据库,来源于Google的关于BigTable的论文,主要用于随机访问,实时读写的大数据。
(6.)ZooKeeper:是一个为分布式应用所设计的协调服务,主要为用户提供同步,配置管理,分组和命名等服务,减轻分布式应用程序所承担的协调任务。
还有其它特别多其它项目这里不做一一解释了。
三:安装Hadoop运行环境
用户创建:
(1.)创建Hadoop用户组,输入命令:
groupadd hadoop
(2.)创建hser用户,输入命令:
useradd –p hadoop hser
(3.)设置hser的密码,输入命令:
passwd hser
按提示输入两次密码
(4.)为hser用户添加权限,输入命令:
#修改权限
chmod 777 /etc/sudoers
#编辑sudoers
Gedit /etc/sudoers
#还原默认权限
chmod 440 /etc/sudoers
先修改sudoers 文件权限,并在文本编辑窗口中查找到行“root ALL=(ALL)”,紧跟后面更新加行“hser ALL=(ALL) ALL”,将hser添加到sudoers。添加完成后切记还原默认权限,否则系统将不允许使用sudo命令。
(5.)设置好后重启虚拟机,输入命令:
Sudo reboot
重启后切换到hser用户登录
安装JDK
(1.)下载jdk-7u67-linux-x64.rpm,并进入下载目录。
(2.)运行安装命令:
Sudo rpm –ivh jdk-7u67-linux-x64.rpm
完成后查看安装路径,输入命令:
Rpm –qa jdk –l
记住该路径,
(3.)配置环境变量,输入命令:
Sudo gedit /etc/profile
打开profile文件在文件最下面加入如下内容
export JAVA_HOME=/usr/java/jdk.7.0.67
export CLASSPATH=$ JAVA_HOME/lib:$ CLASSPATH
export PATH=$ JAVA_HOME/bin:$PATH
保存后关闭文件,然后输入命令使环境变量生效:
Source /etc/profile
(4.)验证JDK,输入命令:
Java –version
若出现正确的版本则安装成功。
配置本机SSH免密码登录:
(1.)使用ssh-keygen 生成私钥与公钥文件,输入命令:
ssh-keygen –t rsa
(2.)私钥留在本机,公钥发给其它主机(现在是localhost)。输入命令:
ssh--id localhost
(3.)使用公钥来登录输入命令:
ssh localhost
配置其它主机SSH免密登录
(1.)克隆两次。在VMware左侧栏中选中虚拟机右击,在弹出的快捷键菜单中选中管理---克隆命令。在克隆类型时选中“创建完整克隆”,单击“下一步”,按钮直到完成。
(2.)分别启动并进入三台虚拟机,使用ifconfig查询个主机IP地址。
(3.)修改每台主机的hostname及hosts文件。
步骤1:修改hostname,分别在各主机中输入命令。
Sudo gedit /etc/sysconfig/network
步骤2:修改hosts文件:
sudo gedit /etc/hosts
步骤3:修改三台虚拟机的IP
第一台对应node1虚拟机的IP:192.168.1.130
第二台对应node2虚拟机的IP:192.168.1.131
第三台对应node3虚拟机的IP:192.168.1.132
(4.)由于已经在node1上生成过密钥对,所有现在只要在node1上输入命令:
ssh--id node2
ssh--id node3
这样就可以将node1的公钥发布到node2,node3。
(5.)测试SSH,在node1上输入命令:
ssh node2
#退出登录
exit
ssh node3
exit
四:Hadoop完全分布式安装
1. Hadoop有三种运行方式:
(1.)单机模式:无须配置,Hadoop被视为一个非分布式模式运行的独立Java进程
(2.)伪分布式:只有一个节点的集群,这个节点即是Master(主节点,主服务器)也是Slave(从节点,从服务器),可在此单节点上以不同的java进程模拟分布式中的各类节点
(3.)完全分布式:对于Hadoop,不同的系统会有不同的节点划分方式。
2.安装Hadoop
(1.)获取Hadoop压缩包hadoop-2.6.0.tar.gz,下载后可以使用VMWare Tools通过共享文件夹,或者使用Xftp工具传到node1。进入node1 将压缩包解压到/home/hser目录下,输入命令:
#进入HOME目录即:“/home/hser”
cd ~
tar –zxvf hadoop-2.6.0.tar.gz
(2.)重命名hadoop输入命令:
mv hadoop-2.6.0 hadoop
(3.)配置Hadoop环境变量,输入命令:
Sudo gedit /etc/profile
将以下脚本加到profile内:
#hadoop
export HADOOP_HOME=/home/hser/hadoop
export PATH=$HADOOP_HOME/bin:$PATH
保存关闭,最后输入命令使配置生效
source /etc/profile
注:node2,和node3都要按照以上配置进行配置。
3.配置Hadoop
(1.)hadoop-env.sh文件用于指定JDK路径。输入命令:
[hser@node1 ~]$ cd ~/hadoop/etc/hadoop
[hser@node1 hadoop]$ gedit hadoop-env.sh
然后增加如下内容指定jDK路径。
export JAVA_HOME=/usr/java/jdk1.7.0_67
(2.)打开指定JDK路径,输入命令:
export JAVA_HOME=/usr/java/jdk1.7.0_67
(4.)core-site.xml:该文件是Hadoop全局配置,打开并在
‘陆’ cloudera 安装hadoop后,怎样启动
你看的教程是旧的,新版的hadoop启动脚本放在sbin下。start-all.sh已经逐渐被废弃,采用新的启动脚本:
sbin/hadoop-daemon.sh --script hdfs start datanodesbin/hadoop-daemon.sh --script hdfs start namenodesbin/yarn-daemon.sh start resourcemanagersbin/yarn-daemon.sh start proxyserversbin/mr-jobhistory-daemon.sh start historyserver【注意1】.不要随意执行上述命令,需要你规划好那几个节点是namenode, 哪些节点是datanode, 哪个节点是resourcemanager, proxyserver, 以及historyserver
【注意2】.sbin/hadoop-daemon.sh --script hdfs start datanode 执行后只能只能启动当前节点;
sbin/hadoop-daemons.sh --script hdfs start datanode可以启动etc/hadoop/slaves中指定的datanode
【注意3】. 最新版本(hadoop2.2.0)的启动脚本libexec/hadoop-config.sh有bug, 若想用
sbin/hadoop-daemons.sh --hosts your_host_files --script hdfs start datanode启动节点,注意修改libexec/hadoop-config.sh第98行为:
98 elif [ "--hostnames" = "$1" ]同时要小心--hosts your_host_files option, 用户指定的your_host_files一定放在etc/hadoop/下面,但是启动时只指定该文件名,不包含任何路径名,这也是该启动脚本的一个缺陷。
【注意4】. 也可以采用
sbin/hadoop-daemons.sh --hostnames your_host_name --script hdfs start datanode启动某个节点
‘柒’ yarn 如何与HDFS部署在一起
阳没有言语
‘捌’ 启动hadoop中have命令
Hadoop集群启动命令。
1、启动NameNode,DataNode。
2、启动JournalNode,JournalNode在hdfs-site.xml中指定editslog存储的位置,主备NameNode共享数据,方便同步。
3)、启动DFSZKFailoverController,HA会启用ZooKeeperFailoverController。
4、启动YARN守护进程ResourceManager,NodeManager。
‘玖’ 安装hadoop的步骤有哪些
hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFSHA、YARN等。最新的hadoop-2.4.1又增加了YARNHA
注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,
所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译
(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)
前期准备就不详细说了,课堂上都介绍了
1.修改Linux主机名
2.修改IP
3.修改主机名和IP的映射关系
######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)
/etc/hosts里面要配置的是内网IP地址和主机名的映射关系
4.关闭防火墙
5.ssh免登陆
6.安装JDK,配置环境变量等
集群规划:
主机名 IP 安装的软件 运行的进程
HA181 192.168.1.181 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA182 192.168.1.182 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA183 192.168.1.183 jdk、hadoop ResourceManager
HA184 192.168.1.184 jdk、hadoop ResourceManager
HA185 192.168.1.185 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA186 192.168.1.186 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA187 192.168.1.187 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
说明:
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。ActiveNameNode对外提供服务,而StandbyNameNode则不对外提供服务,仅同步activenamenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFSHA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当ActiveNameNode挂掉了,会自动切换StandbyNameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
安装步骤:
1.安装配置zooekeeper集群(在HA185上)
1.1解压
tar-zxvfzookeeper-3.4.5.tar.gz-C/app/
1.2修改配置
cd/app/zookeeper-3.4.5/conf/
cpzoo_sample.cfgzoo.cfg
vimzoo.cfg
修改:dataDir=/app/zookeeper-3.4.5/tmp
在最后添加:
server.1=HA185:2888:3888
server.2=HA186:2888:3888
server.3=HA187:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir/app/zookeeper-3.4.5/tmp
再创建一个空文件
touch/app/zookeeper-3.4.5/tmp/myid
最后向该文件写入ID
echo1>/app/zookeeper-3.4.5/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在HA186、HA187根目录下创建一个weekend目录:mkdir/weekend)
scp-r/app/zookeeper-3.4.5/HA186:/app/
scp-r/app/zookeeper-3.4.5/HA187:/app/
注意:修改HA186、HA187对应/weekend/zookeeper-3.4.5/tmp/myid内容
HA186:
echo2>/app/zookeeper-3.4.5/tmp/myid
HA187:
echo3>/app/zookeeper-3.4.5/tmp/myid
2.安装配置hadoop集群(在HA181上操作)
2.1解压
tar-zxvfhadoop-2.4.1.tar.gz-C/weekend/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中
vim/etc/profile
exportJAVA_HOME=/app/jdk1.7.0_79
exportHADOOP_HOME=/app/hadoop-2.4.1
exportPATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
cd/home/hadoop/app/hadoop-2.4.1/etc/hadoop
2.2.1修改hadoop-env.sh
exportJAVA_HOME=/app/jdk1.7.0_79
2.2.2修改core-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!--指定hadoop临时目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop-2.4.1/tmp</value>
</property>
<!--指定zookeeper地址-->
<property>
<name>ha.zookeeper.quorum</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
</configuration>
2.2.3修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致-->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!--ns1下面有两个NameNode,分别是nn1,nn2-->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!--nn1的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>HA181:9000</value>
</property>
<!--nn1的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>HA181:50070</value>
</property>
<!--nn2的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>HA182:9000</value>
</property>
<!--nn2的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>HA182:50070</value>
</property>
<!--指定NameNode的元数据在JournalNode上的存放位置-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://HA185:8485;HA186:8485;HA187:8485/ns1</value>
</property>
<!--指定JournalNode在本地磁盘存放数据的位置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/app/hadoop-2.4.1/journaldata</value>
</property>
<!--开启NameNode失败自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--配置失败自动切换实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.</value>
</property>
<!--配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!--使用sshfence隔离机制时需要ssh免登陆-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!--配置sshfence隔离机制超时时间-->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
2.2.4修改mapred-site.xml
<configuration>
<!--指定mr框架为yarn方式-->
<property>
<name>maprece.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.2.5修改yarn-site.xml
<configuration>
<!--开启RM高可用-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--指定RM的clusterid-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!--指定RM的名字-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--分别指定RM的地址-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>HA183</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>HA184</value>
</property>
<!--指定zk集群地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>maprece_shuffle</value>
</property>
</configuration>
2.2.6修改slaves(slaves是指定子节点的位置,因为要在HA181上启动HDFS、在HA183启动yarn,
所以HA181上的slaves文件指定的是datanode的位置,HA183上的slaves文件指定的是nodemanager的位置)
HA185
HA186
HA187
2.2.7配置免密码登陆
#首先要配置HA181到HA182、HA183、HA184、HA185、HA186、HA187的免密码登陆
#在HA181上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点,包括自己
ssh--idHA181
ssh--idHA182
ssh--idHA183
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#配置HA183到HA184、HA185、HA186、HA187的免密码登陆
#在HA183上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置HA182到HA181的免登陆
在HA182上生产一对钥匙
ssh-keygen-trsa
ssh--id-iHA181
2.4将配置好的hadoop拷贝到其他节点
scp-r/app/hadoop-2.5.1/HA182:/app/
scp-r/app/hadoop-2.5.1/HA183:/app/
scp-r/app/hadoop-2.5.1/HA184:/app/
scp-r/app/hadoop-2.5.1/HA185:/app/
scp-r/app/hadoop-2.5.1/HA186:/app/
scp-r/app/hadoop-2.5.1/HA187:/app/
###注意:严格按照下面的步骤
2.5启动zookeeper集群(分别在HA185、HA186、tcast07上启动zk)
cd/app/zookeeper-3.4.5/bin/
./zkServer.shstart
#查看状态:一个leader,两个follower
./zkServer.shstatus
2.6启动journalnode(分别在在HA185、HA186、HA187上执行)
cd/app/hadoop-2.5.1
hadoop-daemon.shstartjournalnode
#运行jps命令检验,HA185、HA186、HA187上多了JournalNode进程
2.7格式化ZKFC(在HA181上执行即可) hdfszkfc-formatZK
2.8格式化HDFS
#在HA181上执行命令:
hdfsnamenode-format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到HA182的/weekend/hadoop-2.4.1/下。
scp-rtmp/HA182:/app/hadoop-2.5.1/
##也可以这样,建议hdfsnamenode-bootstrapStandby
2.9启动HDFS(在HA181上执行)
sbin/start-dfs.sh
2.10启动YARN(#####注意#####:是在HA183上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:
http://192.168.1.181:50070
NameNode'HA181:9000'(active)
http://192.168.1.182:50070
NameNode'HA182:9000'(standby)
验证HDFSHA
首先向hdfs上传一个文件
hadoopfs-put/etc/profile/profile
hadoopfs-ls/
然后再kill掉active的NameNode
kill-9<pidofNN>
通过浏览器访问:http://192.168.1.182:50070
NameNode'HA182:9000'(active)
这个时候HA182上的NameNode变成了active
在执行命令:
hadoopfs-ls/
-rw-r--r--3rootsupergroup19262014-02-0615:36/profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.shstartnamenode
通过浏览器访问:http://192.168.1.181:50070
NameNode'HA181:9000'(standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoopjarshare/hadoop/maprece/hadoop-maprece-examples-2.4.1.jarwordcount/profile/out
OK,大功告成!!!
CID-74d21742-3e4b-4df6-a99c-d52f703b49c0
测试集群工作状态的一些指令:
bin/hdfsdfsadmin-report 查看hdfs的各节点状态信息
bin/hdfshaadmin-getServiceStatenn1 获取一个namenode节点的HA状态
sbin/hadoop-daemon.shstartnamenode单独启动一个namenode进程
./hadoop-daemon.shstartzkfc单独启动一个zkfc进程
‘拾’ Hadoop虚拟机问题
虚拟机问题