导航:首页 > 程序命令 > hive基本命令

hive基本命令

发布时间:2022-08-16 14:29:33

A. 大数据云计算好不好学习

说一下大数据的四个典型的特征:

第一章:Hadoop

在大数据存储和计算中Hadoop可以算是开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚这些是什么:

自己学会如何搭建Hadoop,先让它跑起来。建议先使用安装包命令行安装,不要使用管理工具安装。现在都用Hadoop 2.0。

目录操作命令;上传、下载文件命令;提交运行MapRece示例程序;打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。知道Hadoop的系统日志在哪里。

以上完成之后,就应该去了解他们的原理了:

MapRece:如何分而治之;HDFS:数据到底在哪里,究竟什么才是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

如果有合适的学习网站,视频就去听课,如果没有或者比较喜欢书籍,也可以啃书。当然最好的方法是先去搜索出来这些是干什么的,大概有了概念之后,然后再去听视频。

第二章:更高效的WordCount

在这里,一定要学习SQL,它会对你的工作有很大的帮助。

就像是你写(或者抄)的WordCount一共有几行代码?但是你用SQL就非常简单了,例如:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,而SQL一行搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

另外就是SQL On Hadoop之Hive于大数据而言一定要学习的。

什么是Hive?

官方解释如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。

为什么说Hive是数据仓库工具,而不是数据库工具呢?

有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

了解了它的作用之后,就是安装配置Hive的环节,当可以正常进入Hive命令行是,就是安装配置成功了。

了解Hive是怎么工作的

学会Hive的基本命令:

创建、删除表;加载数据到表;下载Hive表的数据;

MapRece的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用java程序统计出现次数最多的10个单词及次数);

HDS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

自己会写简单的MapRece程序,运行出现问题,知道在哪里查看日志;

会写简单的Select、Where、group by等SQL语句;

Hive SQL转换成MapRece的大致流程;

Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;

从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapRece是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapRece,提交运行。

此时,你的”大数据平台”是这样的:那么问题来了,海量数据如何到HDFS上呢?

第三章:数据采集

把各个数据源的数据采集到Hadoop上。

3.1 HDFS PUT命令

这个在前面你应该已经使用过了。put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。建议熟练掌握。

3.2 HDFS API

HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。建议了解原理,会写Demo。

3.3 Sqoop

Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库,Oracle、MySQL、SQLServer等之间进行数据交换的开源框架。就像Hive把SQL翻译成MapRece一样,Sqoop把你指定的参数翻译成MapRece,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。了解Sqoop常用的配置参数和方法。

使用Sqoop完成从MySQL同步数据到HDFS;使用Sqoop完成从MySQL同步数据到Hive表;如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

3.4 Flume

Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

下载和配置Flume。使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

3.5 阿里开源的DataX

现在DataX已经是3.0版本,支持很多数据源。

第四章:把Hadoop上的数据搞到别处去

Hive和MapRece进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?其实,此处的方法和第三章基本一致的。

HDFS GET命令:把HDFS上的文件GET到本地。需要熟练掌握。

HDFS API:同3.2.

Sqoop:同3.3.使用Sqoop完成将HDFS上的文件同步到MySQL;使用Sqoop完成将Hive表中的数据同步到MySQL。

如果你已经按照流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;

知道sqoop是HDFS和其他数据源之间的数据交换工具;

知道flume可以用作实时的日志采集。

从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapRece来分析数据,把分析结果同步到其他数据源。

接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapRece来执行。

第五章:SQL

其实大家都已经发现Hive后台使用MapRece作为执行引擎,实在是有点慢。因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。

我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:使用Spark还做了其他事情,不想引入过多的框架;Impala对内存的需求太大,没有过多资源部署。

5.1 关于Spark和SparkSQL

什么是Spark,什么是SparkSQL。

Spark有的核心概念及名词解释。

SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。

SparkSQL为什么比Hive跑的快。

5.2 如何部署和运行SparkSQL

Spark有哪些部署模式?

如何在Yarn上运行SparkSQL?

使用SparkSQL查询Hive中的表。Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

关于Spark和SparkSQL,如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

第六章:数据多次利用

请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

关于Kafka:什么是Kafka?Kafka的核心概念及名词解释。

如何部署和使用Kafka:使用单机部署Kafka,并成功运行自带的生产者和消费者例子。使用Java程序自己编写并运行生产者和消费者程序。Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

如果你已经认真完整的学习了以上的内容,那么你应该已经具备以下技能和知识点:

为什么Spark比MapRece快。

使用SparkSQL代替Hive,更快的运行SQL。

使用Kafka完成数据的一次收集,多次消费架构。

自己可以写程序完成Kafka的生产者和消费者。

从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

第七章:越来越多的分析任务

不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

7.1 Apache Oozie

Oozie是什么?有哪些功能?

Oozie可以调度哪些类型的任务(程序)?

Oozie可以支持哪些任务触发方式?

安装配置Oozie。

7.2 其他开源的任务调度系统

Azkaban,light-task-scheler,Zeus,等等。另外,我这边是之前单独开发的任务调度与监控系统,具体请参考《大数据平台任务调度与监控系统》。

第八章:我的数据要实时

在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

什么是Storm?有哪些可能的应用场景?

Storm由哪些核心组件构成,各自担任什么角色?

Storm的简单安装和部署。

自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

什么是Spark Streaming,它和Spark是什么关系?

Spark Streaming和Storm比较,各有什么优缺点?

使用Kafka + Spark Streaming,完成实时计算的Demo程序。

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:数据要对外

通常对外(业务)提供数据访问,大体上包含以下方面。


离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。

实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。

即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。

B. 在hive数据库中怎么查看表结构

查看表结构信息如下

1、descformattedtable_name;

2、desctable_name。

C. Hive是什么

此外,hive也支持熟悉map-rece的开发者使用map-rece程序对数据做更加复杂的分析。 hive可以很好的结合thrift和控制分隔符,也支持用户自定义分隔符。 hive基于hadoop,hadoop是批处理系统,不能保存低延迟,因此,hive的查询也不能保证低延迟。 hive的工作模式是:提交一个任务,等到任务结束时被通知,而不是实时查询。相对应的是,类似于Oracle这样的系统当运行于小数据集的时候,响应非常快,可当处理的数据集非常大的时候,可能需要数小时。需要说明的是,hive即使在很小的数据集上运行,也可能需要数分钟才能完成。 低延迟不是hive追求的首要目标。

D. hive中怎么删除表中的部分数据

工具:(1)HIVE;

(2)电脑;

(3)Xshell;

采用hdfs命令进行删除表中的部分数据:

1、先使用hdfs查看该表实际分区以及数据目录位置

hdfs dfs -ls /user/hive/warehouse/tbdata.db/表名小写/;

E. 如何在Java中执行Hive命令或HiveQL

这里所说的在Java中执行Hive命令或HiveQL并不是指Hive
Client通过JDBC的方式连接HiveServer(or
HiveServer2)执行查询,而是简单的在部署了HiveServer的服务器上执行Hive命令。当然这是一个简单的事情,平常我们通过Hive做简单的数据分析实验的时候,都是直接进入Hive执行HiveQL
通过进入Hive执行HiveQL,只能将分析结果打印到屏幕或是存入临时表,如果想把分析结果写入文件,或者对分析结果做进一步的分析,用程序做分析,就是为什么要在Java中执行Hive命令。
Java在1.5过后提供了ProcessBuilder根据运行时环境启动一个Process调用执行运行时环境下的命令或应用程序(1.5以前使用Runtime),关于ProcessBuilder请参考Java相关文档。调用代码如下:
String
sql="show
tables;
select
*
from
test_tb
limit
10";
List<String>
command
=
new
ArrayList<String>();
command.add("hive");
command.add("-e");
command.add(sql);
List<String>
results
=
new
ArrayList<String>();
ProcessBuilder
hiveProcessBuilder
=
new
ProcessBuilder(command);
hiveProcess
=
hiveProcessBuilder.start();
BufferedReader
br
=
new
BufferedReader(new
InputStreamReader(
hiveProcess.getInputStream()));
String
data
=
null;
while
((data
=
br.readLine())
!=
null)
{
results.add(data);
}其中command可以是其它Hive命令,不一定是HiveQL。

F. 怎么在Java中执行Hive命令或HiveQL

Java在1.5过后提供了ProcessBuilder根据运行时环境启动一个Process调用执行运行时环境下的命令或应用程序(1.5以前使用Runtime),关于ProcessBuilder请参考Java相关文档。调用代码如下:
String sql="show tables; select * from test_tb limit 10";
List<String> command = new ArrayList<String>();
command.add("hive");
command.add("-e");
command.add(sql);
List<String> results = new ArrayList<String>();
ProcessBuilder hiveProcessBuilder = new ProcessBuilder(command);
hiveProcess = hiveProcessBuilder.start();
BufferedReader br = new BufferedReader(new InputStreamReader(
hiveProcess.getInputStream()));
String data = null;
while ((data = br.readLine()) != null) {
results.add(data);
}
其中command可以是其它Hive命令,不一定是HiveQL。

G. 怎样用命令配置hive启动hwi

您好,很高兴为您解答。


1、hive-site.xml配置

<property>
<name>hive.hwi.war.file</name>
<value>lib/hive-hwi-0.10.0-cdh4.3.0.war</value>
<description>,relativeto${HIVE_HOME}.
</description>
</property>
<property>
<name>hive.hwi.listen.host</name>
<value>0.0.0.0</value>
<description>
on</description>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
<description></description>
</property>

2、添加jar

将一下jar包添加到hive的lib下面

jasper-compiler-5.5.23.jar

jasper-runtime-5.5.23.jar

ant.jar

ant-launcher-1.8.2.jar

tools.jar(jdk的lib包下面的jar包)


3、启动hwi服务

nohupbin/hive--servicehwi>/dev/null2>/dev/null&


4、访问界面

http://172.21.1.56:9999/hwi


如若满意,请点击右侧【采纳答案】,如若还有问题,请点击【追问】


希望我的回答对您有所帮助,望采纳!


~O(∩_∩)O~

H. hive中怎么退出所连接的数据库

1、hive 命令行模式,直接输入/hive/bin/hive的执行程序,或者输入 hive --service cli
用于linux平台命令行查询,查询语句基本跟mysql查询语句类似
2、 hive web界面的 (端口号9999) 启动方式
hive –service hwi &
用于通过浏览器来访问hive,感觉没多大用途

I. hive命令中有没有一个命令是显示数据库下所有的partitions

insert overwrite table t_table1 select * from t_table1 where XXXX; 其中xxx是你需要保留的数据的查询条件。 如果清空表,如下: insert overwrite table t_table1 select * from t_table1 where 1=0;

阅读全文

与hive基本命令相关的资料

热点内容
股市中带星号的app是什么 浏览:707
什么路由可以刷机做打印机服务器 浏览:5
电脑怎么找到云服务器 浏览:871
微信怎么发应用app 浏览:776
花生壳dns服务器地址 浏览:648
squad服务器一般什么时候人多 浏览:479
程序员战门课 浏览:474
config保存服务器地址 浏览:317
预订网吧座位的app叫什么 浏览:416
香港服务器主机地址 浏览:640
网店美工pdf 浏览:447
一堆文件夹怎么弄出来 浏览:743
博途如何编译硬件 浏览:418
fortran程序pdf 浏览:504
电池消耗算法 浏览:394
服务器中断连接怎么处理 浏览:222
上世纪互联网不发达程序员很难 浏览:841
语音识别android开源 浏览:762
地埋式垃圾压缩中转站 浏览:902
apachehttpdlinux 浏览:944