❶ python爬虫工程师是什么职业
1 为什么选择爬虫?要想论述这个问题,需要从网络爬虫是什么?学习爬虫的原因是什么?怎样学习爬虫来理清自己学习的目的,这样才能更好地去研究爬虫技术并坚持下来。1.1 什么是爬虫:爬虫通常指的是网络爬虫,就是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。一般是根据定义的行为自动进行抓取,更智能的爬虫会自动分析目标网站结构。它还有一些不常使用的名字。如:网络蜘蛛(Web spider)、蚂蚁(ant)、自动检索工具(automatic indexer)、网络疾走(WEB scutter)、网络机器人等。1.2 学习爬虫的原因:1.2.1学习爬虫是一件很有趣的事。我曾利用爬虫抓过许多感兴趣东西,兴趣是最好的老师,感兴趣的东西学的快、记的牢,学后有成就感。@学习爬虫,可以私人订制一个搜索引擎,并且可以对搜索引擎的数据采集工作原理进行更深层次地理解。有的朋友希望能够深层次地了解搜索引擎的爬虫工作原理,或者希望自己能够开发出一款私人搜索引擎,那么此时,学习爬虫是非常有必要的。简单来说,我们学会了爬虫编写之后,就可以利用爬虫自动地采集互联网中的信息,采集回来后进行相应的存储或处理,在需要检索某些信息的时候,只需在采集回来的信息中进行检索,即实现了私人的搜索引擎。当然,信息怎么爬取、怎么存储、怎么进行分词、怎么进行相关性计算等,都是需要我们进行设计的,爬虫技术主要解决信息爬取的问题。@学习爬虫可以获取更多的数据源。这些数据源可以按我们的目的进行采集,去掉很多无关数据。在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大。此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息。@对于很多SEO从业者来说,学习爬虫,可以更深层次地理解搜索引擎爬虫的工作原理,从而可以更好地进行搜索引擎优化。既然是搜索引擎优化,那么就必须要对搜索引擎的工作原理非常清楚,同时也需要掌握搜索引擎爬虫的工作原理,这样在进行搜索引擎优化时,才能知己知彼,百战不殆。@学习爬虫更有钱景。爬虫工程师是当前紧缺人才,并且薪资待遇普遍较高,所以,深层次地掌握这门技术,对于就业来说,是非常有利的。有些朋友学习爬虫可能为了就业或者跳槽。从这个角度来说,爬虫工程师方向也是不错的选择之一,因为目前爬虫工程师的需求越来越大,而能够胜任这方面岗位的人员较少,所以属于一个比较紧缺的职业方向,并且随着大数据时代的来临,爬虫技术的应用将越来越广泛,在未来会拥有很好的发展空间。除了以上为大家总结的4种常见的学习爬虫的原因外,可能你还有一些其他学习爬虫的原因,总之,不管是什么原因,理清自己学习的目的,就可以更好地去研究一门知识技术,并坚持下来。1.3 怎样学习爬虫:1.3.1 选择一门编程语言。入门爬虫的前提肯定是需要学习一门编程语言,推荐使用Python 。2018年5月Python已排名第一,列为最受欢迎的语言。很多人将 Python 和爬虫绑在一起,相比 java , Php , Node 等静态编程语言来说,Python 内部的爬虫库更加丰富,提供了更多访问网页的 API。写一个爬虫不需要几十行,只需要 十几行就能搞定。尤其是现在反爬虫日渐严峻的情况下,如何伪装自己的爬虫尤为重要,例如 UA , Cookie , Ip 等等,Python 库对其的封装非常和谐,为此可以减少大部分代码量。1.3.2 学习爬虫需要掌握的知识点。http相关知识,浏览器拦截、抓包;python的scrapy 、requests、BeautifulSoap等第三方库的安装、使用,编码知识、bytes 和str类型转换,抓取javascript 动态生成的内容,模拟post、get,header等,cookie处理、登录,代理访问,多线程访问、asyncio 异步,正则表达式、xpath,分布式爬虫开发等。1.3.3 学习爬虫的基本方法。 理清楚爬虫所需的知识体系,然后各个击破;推荐先买一本有一定知名度的书便于系统的学习爬虫的知识体系。刚开始学的时候,建议从基础库开始,有一定理解之后,才用框架爬取,因为框架也是用基础搭建的,只不过集成了很多成熟的模块,提高了抓取的效率,完善了功能。多实战练习和总结实战练习,多总结对方网站的搭建技术、网站的反爬机制,该类型网站的解析方法,破解对方网站的反爬技巧等。2 为什么选择Python?网络知道在这方面介绍的很多了,相比其它编程语言,我就简答一下理由:2.1 python是脚本语言。因为脚本语言与编译语言的开发测试过程不同,可以极大的提高编程效率。作为程序员至少应该掌握一本通用脚本语言,而python是当前最流行的通用脚本语言。与python相似的有ruby、tcl、perl等少数几种,而python被称为脚本语言之王。2.2 python拥有广泛的社区。可以说,只要你想到的问题,只要你需要使用的第三方库,基本上都是python的接口。2.3 python开发效率高。同样的任务,大约是java的10倍,c++的10-20倍。2.4 python在科研上有大量的应用。大数据计算、模拟计算、科学计算都有很多的包。python几乎在每个linux操作系统上都安装有,大部分unix系统也都缺省安装,使用方便。2.5 python有丰富和强大的独立库。它几乎不依赖第三方软件就可以完成大部分的系统运维和常见的任务开发;python帮助里还有许多例子代码,几乎拿过来略改一下就可以正式使用。
❷ 只因写了一段爬虫,公司200多人被抓,爬虫究竟是否违法
01.技术纯真
许多朋友向我传达了一个信息:技术是无辜的,技术本身没有对与错,但是使用技术的人是对还是错。如果公司或程序员知道使用其技术是非法的,则公司或个人需要为此付出代价。
在今年颁布了《中华人民共和国网络安全法》之后,许多以前处于灰色地带的企业无法开展。
您看不到以前非常流行的各种社会工作者网站。现在大多数人都消失了吗?因为最新的安全法强调出售超过50条个人信息属于“严重情况”,需要履行其法律责任。
许多草根网站管理员主动关闭了该网站。目前有很多涉及版权信息的网站,如书籍,影视剧,课程等,在后期也将面临越来越严格的审查。
3.无非法利润
恶意使用爬虫技术来获取数据,抢占不正当竞争优势甚至谋取非法利益可能是违法的。实际上,由于非法使用爬虫技术来捕获数据而引起的纠纷数量并不大,其中大多数是基于不正当竞争而提起诉讼的。
例如,如果您获取了公众评论上的所有公共信息,则您复制了一个相似的网站并从该网站中获得了很多利润。这也是一个问题。
一般来说,爬虫是为企业造福的。因此,爬虫开发者的道德自力更生和企业管理者的良知对于避免触及法律底线至关重要。
❸ 学习Python开发可以从事哪些岗位
下面我们来说一下Python具体的工作岗位以及其岗位要求:
Python后台开发工程师:主要是负责搭建和改进平台产品的后台,并与前端开发工程师相互配合完成整体产品的开发工作。要求工程师具备至少一门Python Web开发框架(Tornado、Django、Flask等),了解并熟悉MySQL/Redis/MongoDB。还要熟悉分布式、微服务、高性能Web服务的开发。
Python爬虫开发工程师:爬虫开发工程师并非我们预想的那样,只是负责为公司爬取相对应的数据内容。爬虫开发工程师主要负责对传统网页、SNS及微博等各种网站信息高效采集与正确解析,然后对用户数据进行整理分析,参与建模的构建,总结分析不同网站、网页的结构特点及规律,负责爬虫架构设计和研发,参与爬虫核心算法和策略优化研究。需要开发工程师熟悉了解robot规则、selenium、mitmproxy、pymouse等内容。当然作为爬虫开发工程师一定要有一定的职业情况,所有工作都需要在合理合法的需求下进行。
Python全栈开发工程师:是指可以使用Python相关工具,独立完成网站开发,称之为全栈开发。全栈开发工程师需要掌握非常多的技能,包括:项目管理、前后端开发、界面设计、产品设计、数据库开发、多端产品等等。
自动化运维工程师:是在基本的运维工作的基础上,实现运维工作的自动化,并且对自动化程序进行优化提升。需要从业者在掌握基本的运营工作的前提下,掌握Python中的IPy、Ansible、Saltstack等常用模块。
自动化测试工程师:首要要完成测试的基本工作,包括测试计划、测试用例、黑盒测试、性能测试等等。其次要是完成产品的自动化测试的部署以及维护工作,并且不断尝试新的方法,新的工具,以提高测试的效率。需要掌握Python以及selenium相关的技能。
数据分析师:指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。需要从业者了解行业相关业务知识、相关管理工作、掌握足够的数据分析方法、了解数据分析工具使用、能够完成数据分析建模等,工作内容偏重于分析,同样也要掌握一定的开发能力,例如R语言和Python语言。
数据分析开发工程师:根据数据分析师的建模完成数据相关的开发工作,搭建仓库、完成数据存储、数据处理、计算处理以及报表开发等工作。需要从业者熟练应用数据库、数据建模开发、Python相关数据科学知识等技能。
人工智能开发工程师:根据企业人工智能AI相关的开发需求,完成相应产品或者功能开发。需要从业者掌握充分的数据理论基础、Python开发基础、机器学习理论与实践、深度学习理论与实践、自然语言处理等一系列相关的开发技能。
Python游戏开发工程师:主要负责游戏服务端的逻辑开发。需要从业者掌握Python各种性能优化方法、soket网络编程知识、运维相关基础知识、以及Python相关的游戏开发库与框架。此外还可以将Python开发相关工作按照岗位晋升分为初级Python开发工程师、中级Python开发工程师、高级Python开发工程师、项目经理、架构师、CTO等。主要是根据从业者工作年限,在某个就业方向的工作经验以及解决问题的能力进行定位。
无论是哪个就业方向,扎实的学习好Python相关知识是重中之重,在互联网行业,无论是大厂还是创业创新的公司,招聘人才的最核心要求是技术能力,只有自己的能力和岗位匹配的时候,才能获得更多的工作机会。
❹ python 适合做什么开发
主要可以做小程序,爬虫程序,用于系统编程等等还是很广泛的。
Python 的应用领域分为下面几类。下文将介绍一些Python 具体能帮我们做的事情。但我们不会对各个工具进行深入探讨,如果你对这些话题感兴趣,请从老男孩python培训网站或其他一些资源中获取更多的信息。
1.python可以用于系统编程 Python 对操作系统服务的内置接口,使其成为编写可移植的维护操作系统的管理工具和部件(有时也被称为Shell 工具)的理想工具。
Python 程序可以搜索文件和目录树,可以运行其他程序,用进程或线程进行并行处理等等。
2.python可以用于用户图形接口
Python 的简洁以及快速的开发周期十分适合开发GUI 程序。此外,基于C++ 平台的工具包wxPython GUI API 可以使用Python 构建可移植的GUI 。
诸如PythonCard 和Dabo 等一些高级工具包是构建在wxPython 和Tkinter 的基础API 之上的。通过适当的库,你可以使用其他的GUI 工具包,例如,Qt 、GTK 、MFC 和Swing 等。
3.python可以用于Internet 脚本
Python 提供了标准Internet 模块,使Python 能够广泛地在多种网络任务中发挥作用,无论是在服务器端还是在客户端都是如此。
而且网络上还可以获得很多使用Python 进行Internet 编程的第三方工具此外,Python 涌现了许多Web 开发工具包,例如,Django 、TurboGears 、Pylons 、Zope 和WebWare ,使Python 能够快速构建功能完善和高质量的网站。
4.python可以用于组件集成
在介绍Python 作为控制语言时,曾涉及它的组件集成的角色。Python 可以通过C/C++ 系统进行扩展,并能够嵌套C/C++ 系统的特性,使其能够作为一种灵活的粘合语言,脚本化处理其他系统和组件的行为。
例如,将一个C库集成到Python 中,能够利用Python 进行测试并调用库中的其他组件;将Python 嵌入到产品中,在不需要重新编译整个产品或分发源代码的情况下,能够进行产品的单独定制。
5.python能用于数据库编程
对于传统的数据库需求,Python 提供了对所有主流关系数据库系统的接口,Python 定义了一种通过Python 脚本存取SQL 数据库系统的可移植的数据库API ,这个API 对于各种底层应用的数据库系统都是统一的。
所以一个写给自由软件MySQL 系统的脚本在很大程度上不需改变就可以工作在其他系统上(例如,Oracle )-- 你仅需要将底层的厂商接口替换掉就可以实现。
6.python 可以用于快速原型
对于Python 程序来说,使用Python 或C编写的组件看起来都是一样的。正因为如此,我们可以在一开始利用Python 做系统原型,之后再将组件移植到C或C++ 这样的编译语言上。
7.python 可以用于数值计算和科学计算编程
我们之前提到过的NumPy 数值编程扩展包括很多高级工具,通过将Python 与出于速度考虑而使用编译语言编写的数值计算的常规代码进行集成,其他一些数值计算工具为Python 提供了动画、3D 可视化、并行处理等功能的支持。
8.python 可以用于游戏、图像、人工智能、XML 、机器人等
Python 的应用领域很多,远比这里提到的多得多。
例如,可以利用pygame 系统使用Python 对图形和游戏进行编程;用PIL 和其他的一些工具进行图像处理;用PyRo 工具包进行机器人控制编程。
当然python能干的事情不止上面这么多领域,相信你在学完老男孩python自动化架构课程就能知道python应用的领域之多了。
Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件,源代码和解释器CPython遵循 GPL(GNUGeneral Public License)许可。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
7月20日,IEEE发布2017年编程语言排行榜:Python高居首位 。
2018年3月,该语言作者在邮件列表上宣布 Python 2.7将于2020年1月1日终止支持。用户如果想要在这个日期之后继续得到与Python 2.7有关的支持,则需要付费给商业供应商。
❺ python程序员可以从事是什么方向的研发
web开发首先就可以用python、其次一些公司的运维部门也会用python开发一些工具、现在很多大公司的架构都采用了微服务架构、就是一个大项目中的不同子模块可以用不同的开发语言来实现、只要保证接口能对接上就可以、
还有的一些公司会用python进行机器学习算法的开发、例如招聘网站的人才匹配算法就可以用python的机器学习算法来实现、因为python中有很多关于机器学习算法的库
拓展:
自从20世纪90年代初Python语言诞生至今,它已被逐渐广泛应用于系统管理任务的处理和Web编程。
Python的创始人为Guido van Rossum。1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC 语言的一种继承。之所以选中Python(大蟒蛇的意思)作为该编程语言的名字,是因为他是一个叫Monty Python的喜剧团体的爱好者。
ABC是由Guido参加设计的一种教学语言。就Guido本人看来,ABC 这种语言非常优美和强大,是专门为非专业程序员设计的。但是ABC语言并没有成功,究其原因,Guido 认为是其非开
标识
放造成的。Guido 决心在Python 中避免这一错误。同时,他还想实现在ABC 中闪现过但未曾实现的东西。
就这样,Python在Guido手中诞生了。可以说,Python是从ABC发展起来,主要受到了Mola-3(另一种相当优美且强大的语言,为小型团体所设计的)的影响。并且结合了Unix shell和C的习惯。
Python[5] 已经成为最受欢迎的程序设计语言之一。2011年1月,它被TIOBE编程语言排行榜评为2010年度语言。自从2004年以后,python的使用率呈线性增长[6] 。
由于Python语言的简洁性、易读性以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python来教授程序设计课程。例如卡耐基梅隆大学的编程基础、麻省理工学院的计算机科学及编程导论就使用Python语言讲授。众多开源的科学计算软件包都提供了Python的调用接口,例如着名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。
❻ 除了python可以爬虫还有哪些编程语言可以爬虫
能够做网络爬虫的编程语言很多,包括PHP、Java、C/C++、Python等都能做爬虫,都能达到抓取想要的数据资源。针对不同的环境,我们需要了解他们做爬虫的优缺点,才能选出合适的开发环境。
(一)PHP
网络爬虫需要快速的从服务器中抓取需要的数据,有时数据量较大时需要进行多线程抓取。PHP虽然是世界上最好的语言,但是PHP对多线程、异步支持不足,并发不足,而爬虫程序对速度和效率要求极高,所以说PHP天生不是做爬虫的。
(二)C/C++
C语言是一门面向过程、抽象化的通用程序设计语言,广泛应用于底层开发,运行效率和性能是最强大的,但是它的学习成本非常高,需要有很好地编程知识基础,对于初学者或者编程知识不是很好地程序员来说,不是一个很好的选择。当然,能够用C/C++编写爬虫程序,足以说明能力很强,但是绝不是最正确的选择。
(三)Java
在网络爬虫方面,作为Python最大的对手Java,拥有强大的生态圈。但是Java本身很笨重,代码量大。由于爬虫与反爬虫的较量是持久的,也是频繁的,刚写好的爬虫程序很可能就不能用了。爬虫程序需要经常性的修改部分代码。而Java的重构成本比较高,任何修改都会导致大量代码的变动。
(四)Python
Python在设计上坚持了清晰划一的风格,易读、易维护,语法优美、代码简洁、开发效率高、第三方模块多。并且拥有强大的爬虫Scrapy,以及成熟高效的scrapy-redis分布式策略。实现同样的爬虫功能,代码量少,而且维护方便,开发效率高。
❼ python里面的爬虫是什么
世界上80%的爬虫是基于Python开发的,学好爬虫技能,可为后续的大数据分析、挖掘、机器学习等提供重要的数据源。
什么是爬虫?
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
其实通俗的讲就是通过程序去获取web页面上自己想要的数据,也就是自动抓取数据
爬虫可以做什么?
你可以用爬虫爬图片,爬取视频等等你想要爬取的数据,只要你能通过浏览器访问的数据都可以通过爬虫获取。
❽ Python爬虫是什么
爬虫一般指网络资源的抓取,通过编程语言撰写爬虫工具,抓取自己想要的数据以及内容。而在众多编程语言之中,Python有丰富的网络抓取模块,因此成为撰写爬虫的首选语言,并引起了学习热潮。
Python作为一门编程语言而纯粹的自由软件,以简洁清晰的语法和强制使用空白符号进行语句缩进的特点受到程序员的喜爱。用不同编程语言完成一个任务,C语言一共要写1000行代码,Java要写100行代码,而Python只需要20行,用Python来完成编程任务代码量更少,代码简洁简短而且可读性强。
Python非常适合开发网络爬虫,因为对比其他静态编程语言,Python抓取网页文档的接口更简洁;对比其他脚本语言,Python的urllib2包提供了较为完整的访问网页文档的API。
Python爬虫的工作流程是什么?
Python爬虫通过URL管理器,判断是否有待爬URL,如果有待爬URL,通过调度器进行传递给下载器,下载URL内容,通过调度器传送给解释器,解析URL内容,将有价值数据和新的URL列表通过调度器传递给应用程序,输出价值信息的过程。
Python是一门非常适合开发网络爬虫的语言,提供了urllib、re、json、pyquery等模块,同时还有很多成型框架,比如说Scrapy框架、PySpider爬虫系统等,代码十分简洁方便,是新手学习网络爬虫的首选语言。
❾ 爬虫技术可以分析数据吗
目前在不少大数据团队中,数据分析和数据挖掘工程师通常都有明确的分工,数据采集往往并不是数据分析和挖掘工程师的任务,通常做爬虫的是大数据应用开发程序员或者是数据采集工程师(使用爬虫工具)的工作任务。但是对于数据分析工程师来说,掌握爬虫技术也是一个比较普遍的现象,原因有以下几点:
第一:数据分析师往往都会使用Python,而爬虫是Python比较擅长的开发内容。不少数据分析师在学习Python开发的时候都做过爬虫开发,其实不少Python程序员都会使用Python做爬虫,这是学习Python比较常见的实验。
第二:方便。不少数据分析工程师在学习的时候都会自己找数据,而编写爬虫是找数据比较方便的方式,所以很多数据分析工程师往往都会写爬虫。我在早期学数据分析的时候就是自己写爬虫,这是一个比较普遍的情况。
第三:任务需要。现在不少团队针对小型分析任务往往会交给一两个人来完成,这个时候往往既要收集数据、分析数据,还需要呈现数据,这种情况下就必须掌握爬虫技术了。这种情况在大数据分析领域是比较常见的,当然也取决于项目的大小。看一个使用Numpy和Matplotlib做数据分析呈现的小例子:
网络爬虫技术本身并不十分复杂(也可以做的十分复杂),在使用Python开发出一个爬虫程序之后,在很多场景下是可以复用的,只需要调整一些参数就可以了,所以爬虫技术并不难。对于数据分析人员来说,获得数据的方式有很多种,编写爬虫是一个比较方便和实用的手段,建议大数据从业人员都学习一下爬虫技术。
❿ 一名Python程序员会哪些好用的工具
很多Python学习者想必都会有如下感悟:最开始学习Python的时候,因为没有去探索好用的工具,吃了很多苦头。后来工作中深刻体会到,合理使用开发的工具的便利和高效。今天,我就把Python程序员使用频率比较高的5款开发工具推荐给大家,希望对大家的工作和学习有帮助。
一、最强终端:Upterm
本来想推荐 fish 或者 zsh,但其实这两个我也主要是贪图自动补全这个特性。最近在用的这个 Upterm 其实很简单好用,它是一个全平台的终端,可以说是终端里的 IDE,有着强大的自动补全功能。之前的名字叫 BlackWindow,有人跟他说这个名字不利于社区推广,改名叫 Upterm 之后现在已经17000+ Star了。
二、交互式解释器:Ptpython
一个交互式的 Python 解释器。支持语法高亮、提示甚至是 vim 和 emacs 的键入模式。其实我们在课程里提供的在线终端也内置了 ptpython。
三、包管理必备:Anaconda
强烈推荐Anaconda ,它能帮你安装好许多麻烦的东西,包括: Python 环境、pip 包管理工具、常用的库、配置好环境路径等等。这些事情小白自己一个个去做的话,容易遇到各种问题,带来挫败感。如果你想用Python搞数据方面的事情,就安装它就好了,它甚至开发了一套JIT的解释器Numba。所以 Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞了。
四、编辑器:Sublime3
小白的话当然还是推荐从PyCharm开始上手,但有时候写一些轻量的小脚本,就会想用轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单。配合安装Anaconda或CodeIntel插件,可以让 Sublime拥有近乎IDE的体验。
五、前端在线编辑器:CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想写前端的话,这个在线编辑器太方便了,简直是节省了后端工程师的生命啊!不用安装npm的几千个包了,它已经在云端完成了,采让你直接就可以上手写代码、看效果。对于 React、Vue 这些主流前端框架都支持。算是一个推荐补充吧。