1. 怎样开始自学python
Python是一个通用编程语言,并很快成为每个自重程序员宝库中的一个必需品。
Python中有数不清的Web框架,从基本的微小架构到完整的架构,它们自有各自的优点。那么你准备使用它来做一些web开发,但在探讨细节之前,让我们从头开始。
学习Python的基础
截
至目前,Python有两个版本,2.7.5和3.3是目前Python的稳定版本。你选择哪个学习并不重要,因为区别非常小——尤其对于初学者而言。但
你应该知道,虽然Python 2有非常非常多的第三方支持,Python 3是设计语言的开发者关注的重点,很多第三方支持还没有移植到Python
3。这个选择需要你做出决定。然而,学习任何新的语言都会是一件令人却步的任务,找到合适的地方和人并从中学习是成功的一半。这是这篇指南的用处。让
Python简单、有趣并易于学习是你的蓝图。
1. Codecademy python课程
Codecademy做了一项伟大的工作,将python的课程放在了一起,这对于初学者快速入门Python非常有用。
2. ScreenCasts
对于绝对的初学者,有一些非常棒的截屏视频。
我学习python时参考的一些截屏视频是:
ShowMeDo's Python Screencasts
TheNewBoston's Python Programming Tutorials
两个教程非常优秀,你甚至可以在学习完这两个系列后开始编写脚本。非常建议观看下那些教程,它们是免费的,同时也是你将来参考时的非常好的资源。
3. Python的官方网站
当然,没有比官方http://python.org的文档更加好的资源了。但并不推荐给初学者,因为涉及的概念更加深入和高级,但它仍然是最好的资源。
有了这个,你将拥有一些python知识,知道在python中怎么样处理东西。
读一些书
有过剩的免费高质量的电子书可供选择。下面的快捷清单列出了一些最好的书。你可以免费下载它们的电子版,或者如果你想支持作者的话,你也可以选择购买纸质书籍(或者捐赠),我相信他们将非常感激这种方式。
Think Python: How to Think Like a Computer Scientist
Think Python涉及理论方面的知识稍微多些。这可能会让初学者有些沮丧,但这本书在算法原理和高级概念上的相关知识非常值得一读。
Invent With Python
如果“边学边做”是你的方式,那么构建自己的游戏将会是一个非常值得的经历!在这本书中,AI Sweigart假设没有Python的知识,并全程带领你构建自己的游戏。
熟悉StackOverFlow
StackOverFlow不仅仅全是“新手”错误和问题;有一些非常聪明并乐于助人的人也在使用这个网站——从他们身上学习!
例如,看一下 Python的隐藏特性这个问题。
你这里看到的很多提示和技巧可能很多正式的教程不会涉及,但它们对于中高级Python用户非常有用。
进入Web开发
现在你完成了Python忍者训练,准备深入Ptyhon的Web开发,但现在的问题是有很多的框架,从中选择最好的框架非常困难,但从初学者的角度出发,Flask基本Web框架将非常适合Web开发入门,因为你仅仅需要知道Python就可以开始,而你已经学了很多知识了。
在你学习完Flask框架后,你将会知道创建静态页面非常简单,这是下一个问题出来了,使用它创建下一个web2.0的大应用合适么?答案是Yes,你可以用Flask创建任何你想的应用,但在通过很多步的努力之后,你会发现,你已经成功的重新建造了一个已经有的轮子,但它给予你巨大的灵活性和力量,一开始你可能会感觉势不可挡,而这也是很多初学者选择Django,然后在六个月左右换了其他的框架。
你可以读一下这个,知道哪些网站是由Flask驱动的
The largest site built with Flask
尽管Django和Pyramid也擅长Web开发,但他们是专为高级用户设计,而不是仅仅学习编写了几行python的初学者。但如果你想认真学习Web开发,学习Flask是个很好的入门框架,因为它不抽象任何事物,也没有任何魔法。
常用的库和工具
PyPy
如果你要做的工作是计算密集型的,那么你会发现Python的性能是一个瓶颈,这时候你就需要PyPy。PyPy是Python解释器的一个替代品,可以有效加快处理速度。
NumPy + SciPy
这两个库通常是一起使用的(SciPy依赖于NumPy)。如果你需要做一些复杂的数值计算或科学研究工作,那么这两个库将是你的案头好友。NumPy和SciPy扩展了Python的数学函数功能,可以大大提高你的工作效率。
BeautifulSoup
正如其名,BeautifulSoup确实是非常优雅的。如果你需要解析一个HTML页面来获取一些信息,你应该知道这是非常烦人的事情。BeautifulSoup的作用就是为你做这些事情,并为你节省时间。强烈推荐使用。
Python Image Library
The Python Image Library (PIL)是一个用来处理几乎所有图像操作的扩展库。如果你需要处理一个图像,PIL可以为你做很多。
了解了这些之后,你可以走上你自己的Python之路。
一些Web开发库
SQLAlchemy
SQLAlchemy是Python的一个SQL和对象关系映射(ORM)工具集。它功能强大,并且很灵活,使得应用程序开发者可以方便地进行SQL操作。
Alembic
Alembic是一个轻量级的数据库集成工具,主要和SQLAlchemy协同使用。
2. 不知道怎么学习Python
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
°1 硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
❖“笨方法学 Python”:http://learnpythonthehardway.org/book/
这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
❖“廖雪峰的 Python 2.7 教程”:Home - 廖雪峰的官方网站
Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
❖“The Hitchhiker’s Guide to Python!”:The Hitchhiker’s Guide to Python!
这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
❖“Python 官方文档”:Our Documentation
实践中大部分问题,都可以在官方文档中找到答案。
❖ 辅助工具:Python Tutor
一个 Python 对象可视化的项目,用图形辅助你理解 Python 中的各种概念。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
°2 软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的时,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP协议,HTML,文本编码,JSON一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
3. Python 入门书籍有哪些推荐
1、Python基础教程:是经典的Python入门教程书籍,本书层次鲜明,结构严谨。这本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是Python方面的技术专家,也能从书里找到实用性极强的内容。
2、Python数据分析(Python for data analysis):该书介绍了ipython 、notebook、Numpy、Scipy和Pandas包的使用等知识点,只要读者掌握了python的基本语法就可以学习,对于提升学习Python十分有效。
3、Python 3程序开发指南:讲述了构成Python语言的8个关键要素,分为不同章节对其进行了详尽的阐述,包括数据类型、控制结构与函数、模块、文件处理、调试、进程与线程、网络、数据库、正则表达式、GUI程序设计等各个方面。适合作为Python语言教科书使用。
4、Python数据分析与挖掘实战:本书的基础部分介绍的详细且全面,是一本Python入门书,在后段中的Demo也很贴近实战,并且介绍了使用Python进行数据挖掘的详细案例,数据和代码都可以下载,有极强的实用性。
5、Python Cookbook:本书介绍了Python在各个领域中的一些技巧和方法,从最基本的字符、文件序列、字典和排序,到进阶的面向对象编程、数据库和数据持久化、 XML处理和Web编程,再到高级和抽象的描述符、装饰器、元类、迭代器和生成器,均有涉及。
4. Python难不难容易学吗
分享Python学习路线。
第一阶段Python基础与linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。
学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。
第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。
学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。
第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。
学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。
第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。
学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。
按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。
5. 怎么用最短时间高效而踏实地学习 Python
不管学习什么新的东西,效率最低但是又不可或缺的环节就是看教科书了。虽然看书的过程可能会很无聊,但是过一遍书至少能对整个知识框架有个大体的把
握。我最早知道 Python 还是在《黑客与画家》这本书中看到的,书里面有一章节是讲编程语言的,作者很推荐把 python
作为学习编程的入门语言。我当时是把《简明 Python 教程》给过了一边,后来又看了一遍《深入python》,这里特别推荐《深入
Python》,除了介绍 python 的基本特性之外,还介绍了诸如函数编程、正则表达式、处理 HTML 和
XML等高级用法。除了看书,上公开课也是挺不错的,视频教学本来就比自己啃教科书有意思,而且完成课程作业也能锻炼动手编程能力。我上过两门不错的公开
课,一门是莱斯大学在 Coursera 上开的《Python交互式编程导论》,一边学 python,一边写些小游戏,肯定不会觉得无聊;另一门就是
MIT 在 edX 上开的《计算机科学及python编程导论》,它是 MIT
edX系列课程(XSeries)中的第一课,系列课程共两门,除了这门课以外还有《计算思维及数据科学导论》,不过第二门就没有上过了。
《简明 Python 教程》
《深入 Python》
《Python交互式编程导论》
《计算机科学及python编程导论》
6. 成为一个python 程序员要学习什么
一、认识Python,熟悉Python的安装及配置,找一些入门资料进行查看学习。
二、学习一些简单Python程序,注重对其理解,把握Python的一个整体认知。
三、了解Python数据类型,注重编程能力:
1、基本数据类型、数据类型的转换
2、控制流程、if、if elif、for循环、while循环
3、函数
四、掌握Python设计思想
1、类的定义(类的初始化、类的实例化)
2、类实例属性(数据属性、方法属性)
3、继承
五、Python基础中不可忽视的高级专题,这是具有区分能力薪资大小版的专题
1、异常(异常的抓捕和修复)
2、文件输入输出(文件对象、文件的读写)
3、模块的使用
4、迭代器、生成器、装权饰器
5、正则表达式
7. 新手怎么学习python
很多老司机都推荐新人找一本书来看,当然,如果你有充足的时间,那么就找一本浅显易懂的书,从头到尾看下去,同时把所有的例子都动手跑一边。但你觉得自己的时间并不多,想快速掌握这门语言,那么我极力推荐廖雪峰的Python 教程。因为我确实是从这个教程里面学到了很多,不懂得地方再查资料去补充。
找一个实际的项目去练手。我当时是因为要写一个爬虫项目,爬取 Instagram 的图片,如果选择用 Java 的话就太笨重了。因此不得以我就选择了学习 Python。在这种条件下的效果比你平时学一门语言的效果要好很多。所以,最好的状态就是去做一个实际的项目。比如去搭建一个自己的博客网站。
找到一个已经会 Python 的司机。让他给你指出一条路子,同时在遇到卡壳的地方就找他指点。这样将会事半功倍,当然别人的时间也是有限的,所以当你遇到问题的时候,第一步应该是去搜索查找问题。
切勿浮躁,自信是成功的开始,虽然你已经看了很长时间的资料,但还是不能把程序跑起来。但相信我,几乎所有程序员一开始都是这样的状态,也都是一步步折腾过来的。
选择合适的教程。有些书籍是很经典,但未必就适合你。
多动手。不要只顾着看教程,一定要亲自动手让这些程序在自己电脑跑起来。
额外的知识,如英语、计算机基础知识
要学会看别人代码。这里推荐多使用 Github。之前我也整理过一系列的 Github 教程。Github系列教程一 “开门”Github系列教程二 “加入Github”Github系列教程三 “上手Git”
学会查看官方文档
8. 财务学python需要多久
随着人工智能时代呼声渐起,Python凭借其入门简单、应用广泛的优势成为很多想要入行互联网行业的人们的首选编程语言。如果你想学一门语言,可以从语言的适用性、学习的难易程度、企业主的要求几个方面考虑。从这几个角度看,学习Python都没有什么可挑剔的。
如果你想要专业的学习Python开发,更多需要的是付出时间和精力,一般在2w左右,4-6个月左右的时间。应该根据自己的实际需求去实地看一下,先好好试听之后,再选择适合自己的。只要努力学到真东西,前途自然不会差。
python是一种比较简单的接地气的语言。如果会其它编程语言,努力一个礼拜,你就可以掌握python的精髓。如果你没有编程基础,也不用担心,你努力学习下python的基础。
零基础的新手应该如何系统化的学习Python开发
第一、必须有一个老师给自己讲解,带着学习
这样首先是可以少走很多的弯路,不至于一个小小的问题,就困扰了一天的时间,可能明白人的一句话你就明白,但是自己想可能需要一天的时间,或许最后还是搞不懂。
第二、需要有一个明确而且系统的学习规划
比如你今天学习什么内容,而且今天学习的内容跟着什么案例练习,如果你学习JAVA只是看看免费的视频,那我劝你还是不要浪费时间,必须跟着大量的案例,反正练习,对于一个知识点才可以真正的掌握。
第三、明确的学习路线图
一个明确的学习路线图,每一个阶段有相应的学习时间。
第四、做好长时间学习思想准备
学习过程是循序渐进的过程,你的基础部分看完了,之后肯定会忘一部分,自己以为看明白了,等到用时候发现自己还是不知道怎么用,这是必经的过程,这时候再回去复习基础知识应该有更深入的认识,所以要做好长时间学习思想准备,不要因此放弃,不要急于求成。
第五、尝试用python解决我们项目中遇到的一些问题
要想更好得掌握python,我们的学习不能只是停留在学习语法阶段。我们可以尝试用python解决我们项目中遇到的一些问题,如果项目不是用python开发的,那我们可以想想能不能用python制作一些项目组可以使用的一些工具(utility),通过这些工具简化 项目组成员的任务,提高我们的工作效率。 每天的编码必不可少,既然选择学习编程,学习Python,坚持编码应该是必须做到的
第六、学习目标要明确
我们为什么学习Python?高薪?升职?知道自己要什么,知道自己做什么,怎么做,这个很重要。
学会Python需要多长时间?
如果是自学,从零基础开始学习Python的话,依照每个人理解能力的不同,大致上需要半年到一年半左右的时间。
当然,如果有其它编程语言的经验,入门还是非常快的,大概需要2~3个月可以对上手Python语言编写一些简单的应用。
无论是新手还是有一定基础的朋友,有一个有经验的人带着自己学习,或者参加Python培训课程,都会1个月左右入门,3个月左右对Python有一个全面系统的了解,达到自己动手编程解决问题的能力。
精通Python需要多长时间?
任何知识都是基础入门比较快,达到精通的程序是需要时日的,这是一个逐渐激烈的过程。
精通任何一门编程语言,都需要通过大量的实践来积累经验,解决遇到的各种疑难问题,看别人的源码,分享自己的分码的这个过程,才能够精通Python的方方面面。从编程的一开始,就应该不断的动手去编写代码,不停的去实践,不停的去修改,不停的总结经验,最终才能熟能生巧,达到精通。
一个对Python程序能算的上精通的程序员,对同样一个问题,他知道很多种解决问题的方法,并能从中选择最有效率的方法!
学习Python可以从事哪些职位?
1、网站后端程序员:使用它单间网站,后台服务比较容易维护;
2、自动化运维:自动化处理大量的运维任务;
3、数据分析师:快速开发快速验证,分析数据得到结果;
4、游戏开发者:一般是作为游戏脚本内嵌在游戏中;
5、自动化测试:编写为简单的实现脚本,运用在Selenium/lr中,实现自动化;
6、网站开发:借助django,flask框架自己搭建网站。
9. 新手程序员学习python编程需要了解哪些技巧
python编程开发技术是目前比较热门的编程语言之一了,而对于大多数新接触python编程的程序员来说,如果能够掌握一定的编程技巧的话会大大降低我们掌握python编程的难度,下面IT培训http://www.kmbdqn.cn/就一起来了解一下具体内容吧。
建议1:理解Pythonic概念
建议2:编写Pythonic代码
建议3:理解Python与C语言的不同之处
建议4:在代码中适当添加注释
建议5:通过适当添加空行使代码布局更为优雅、合理
建议6:编写函数的4个原则
建议7:将常量集中到一个文件
建议8:利用assert语句来发现问题
建议9:数据交换值的时候不推荐使用中间变量
建议10:充分利用Lazyevaluation的特性
建议11:理解枚举替代实现的缺陷
建议12:不推荐使用type来进行类型检查
建议13:尽量转换为浮点类型后再做除法
建议14:警惕eval()的安全漏洞
建议15:使用enumerate()获取序列迭代的索引和值
建议16:分清=与is的适用场景
建议17:考虑兼容性,尽可能使用Unicode
建议18:构建合理的包层次来管理mole
建议19:有节制地使用from?import语句
建议20:优先使用absoluteimport来导入模块
建议21:i+=1不等于++i
建议22:使用with自动关闭资源
建议23:使用else子句简化循环(异常处理)
建议24:遵循异常处理的几点基本原则
建议25:避免finally中可能发生的陷阱
建议26:深人理解None,正确判断对象是否为空
建议27:连接字符串应优先使用join而不是+
建议28:格式化字符串时尽量使用.format方式而不是%
建议29:区别对待可变对象和不可变对象
建议30:[]、()和{}:一致的容器初始化形式
建议31:记住函数传参既不是传值也不是传引用
建议32:警惕默认参数潜在的问题
建议33:慎用变长参数
建议34:深入理解str()和repr()的区别
10. Python该怎么入门
对于python的入门
首先会学习python基础语法,面向对象编程与程序设计模式的理解、python数据分析基础、python网络编程、python并发与高效编程等等。
通过前期python学习来了解和掌握常量变量的使用,运算符的使用、流程控制的使用等,最后掌握python编程语言的基础内容。
并会对常见数据结构和相应算法进行学习,注重表格的处理,树结构的处理知识。
第二阶段主要学习内容是web页面开发、web页面特效开发、数据持久化开发、linux运维开发、linux测试开发、服务器集群架构等等。
对js的掌握并在网络前端中使用,而且需要详细将js学习并掌握,为将来从事全栈工作打下基础,也会学习linux操作系统的基础知识和掌握linux操作系统常用命令,并会学习linux自动化运维技巧等。
第三阶段主要学习网络爬虫,数据分析加人工智能:
这一个阶段需要学习的内容也是比较多的,例如:爬虫与数据、多线程爬虫、go语言、NoSQL数据库、Scrapy-Redis框架。
需要掌握爬虫的工作原理和设计思想,掌握反爬虫机制,并且通过学习NoSQL数据库和Scrapy-Redis框架,并且可以使用分布式爬虫框架实现大量数据的获取。
数据分析和人工智能阶段需要学习的数据分析、人工智能深度学习、量化交易模型、数据分析-特征工程和结果可视化和人工智能机器学习等等。
需要理解随机变量的数字特征的概念和性质,并会利用性质计算随机变量的数字特征,了解可视化过程,图形绘制。并且需要掌握Matplotlib模块、常用的机器学习算法等等。
最后就是对于python的入门学习,我们在学习理论、学习python语法基础的同时我们应该多动手、多联系。但是呢,对于我们零基础的小伙伴呢,一般不建议自学。
你肯定要问为什么?我就知道!原因大概有三点:
首先我们自学虽然成本低、学习时间灵活等,但是你想过没,你要自学到就业的程度大概需要多长时间,辞职在家学习,或者买个网课,每天听课、练,你可能需要1年左右,就这你还不一定能够学会、换不一定能够全面掌握企业需要的技术;然后报班学习的学员都已经学完工作半年了。
其次就是学习知识的系统性、前沿性。IT行业的学习一定要系统,不能说我们这里一点那里学一点,完了全是一片一片的知识点,听起来你都有涉及但是真正做项目反而使用不起来,很耽误时间。其次就是前沿性,学习时一定要选择最新的课程大纲、最新的课程。IT行业的技术更新很快。
最后就是就业服务和保障,我们选择报班学习一般都有就业服务,当然我们在学习完也会进行模拟面试和简历指导的等工作。其次就是服务,一般培训机构都有合作企业来招聘,大大增加了我们的就业机会。
总而言之你是零基础选择培训绝对是最快速的转行入门途径!