‘壹’ C语言怎么进行加法计算给个简单的程序来
#include"stdio.h"
voidmain()
{
inta,b,c;
scanf("%d%d",&a,&b);
c=a+b;
printf("%d ",c);
getch();
}
‘贰’ 为什么计算机也懂先算乘法除法
计算机里的加减乘除运算法则,是程序员根据数学里的运算法则,写入程序,告诉计算机的,计算机才懂得先算乘法,除法的。
‘叁’ 程序员必备的一些数学基础知识
作为一个标准的程序员,应该有一些基本的数学素养,尤其现在很多人在学习人工智能相关知识,想抓住一波人工智能的机会。很多程序员可能连这样一些基础的数学问题都回答不上来。
作为一个傲娇的程序员,应该要掌握这些数学基础知识,才更有可能码出一个伟大的产品。
向量 向量(vector)是由一组实数组成的有序数组,同时具有大小和方向。一个n维向量a是由n个有序实数组成,表示为 a = [a1, a2, · · · , an]
矩阵
线性映射 矩阵通常表示一个n维线性空间v到m维线性空间w的一个映射f: v -> w
注:为了书写方便, X.T ,表示向量X的转置。 这里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分别表示v,w两个线性空间中的两个向量。A(m,n)是一个 m*n 的矩阵,描述了从v到w的一个线性映射。
转置 将矩阵行列互换。
加法 如果A和B 都为m × n的矩阵,则A和B 的加也是m × n的矩阵,其每个元素是A和B相应元素相加。 [A + B]ij = aij + bij .
乘法 如A是k × m矩阵和B 是m × n矩阵,则乘积AB 是一个k × n的矩阵。
对角矩阵 对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。一个n × n的对角矩阵A满足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}
特征值与特征矢量 如果一个标量λ和一个非零向量v满足 Av = λv, 则λ和v分别称为矩阵A的特征值和特征向量。
矩阵分解 一个矩阵通常可以用一些比较“简单”的矩阵来表示,称为矩阵分解。
奇异值分解 一个m×n的矩阵A的奇异值分解
其中U 和V 分别为m × m和n×n 的正交矩阵,Σ为m × n的对角矩阵,其对角 线上的元素称为奇异值(singular value)。
特征分解 一个n × n的方块矩阵A的特征分解(Eigendecomposition)定义为
其中Q为n × n的方块矩阵,其每一列都为A的特征向量,^为对角阵,其每一 个对角元素为A的特征值。 如果A为对称矩阵,则A可以被分解为
其中Q为正交阵。
导数 对于定义域和值域都是实数域的函数 f : R → R ,若f(x)在点x0 的某个邻域∆x内,极限
存在,则称函数f(x)在点x0 处可导, f'(x0) 称为其导数,或导函数。 若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。连续函数不一定可导,可导函数一定连续。例如函数|x|为连续函数,但在点x = 0处不可导。
加法法则
y = f(x),z = g(x) 则
乘法法则
链式法则 求复合函数导数的一个法则,是在微积分中计算导数的一种常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,则
Logistic函数是一种常用的S形函数,是比利时数学家 Pierre François Verhulst在 1844-1845 年研究种群数量的增长模型时提出命名的,最初作为一种生 态学模型。 Logistic函数定义为:
当参数为 (k = 1, x0 = 0, L = 1) 时,logistic函数称为标准logistic函数,记 为 σ(x) 。
标准logistic函数在机器学习中使用得非常广泛,经常用来将一个实数空间的数映射到(0, 1)区间。标准 logistic 函数的导数为:
softmax函数是将多个标量映射为一个概率分布。对于 K 个标量 x1, · · · , xK , softmax 函数定义为
这样,我们可以将 K 个变量 x1, · · · , xK 转换为一个分布: z1, · · · , zK ,满足
当softmax 函数的输入为K 维向量x时,
其中,1K = [1, · · · , 1]K×1 是K 维的全1向量。其导数为
离散优化和连续优化 :根据输入变量x的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。
无约束优化和约束优化 :在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。 ### 优化算法
全局最优和局部最优
海赛矩阵
《运筹学里面有讲》,前面一篇文章计算梯度步长的时候也用到了: 梯度下降算法
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),经常用来求解无约束优化的极小值问题。
梯度下降法的过程如图所示。曲线是等高线(水平集),即函数f为不同常数的集合构成的曲线。红色的箭头指向该点梯度的反方向(梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达函数f 值的局部最优解。
梯度上升法
如果我们要求解一个最大值问题,就需要向梯度正方向迭代进行搜索,逐渐接近函数的局部极大值点,这个过程则被称为梯度上升法。
概率论主要研究大量随机现象中的数量规律,其应用十分广泛,几乎遍及各个领域。
离散随机变量
如果随机变量X 所可能取的值为有限可列举的,有n个有限取值 {x1, · · · , xn}, 则称X 为离散随机变量。要了解X 的统计规律,就必须知道它取每种可能值xi 的概率,即
称为离散型随机变量X 的概率分布或分布,并且满足
常见的离散随机概率分布有:
伯努利分布
二项分布
连续随机变量
与离散随机变量不同,一些随机变量X 的取值是不可列举的,由全部实数 或者由一部分区间组成,比如
则称X 为连续随机变量。
概率密度函数
连续随机变量X 的概率分布一般用概率密度函数 p(x) 来描述。 p(x) 为可积函数,并满足:
均匀分布 若a, b为有限数,[a, b]上的均匀分布的概率密度函数定义为
正态分布 又名高斯分布,是自然界最常见的一种分布,并且具有很多良好的性质,在很多领域都有非常重要的影响力,其概率密度函数为
其中, σ > 0,µ 和 σ 均为常数。若随机变量X 服从一个参数为 µ 和 σ 的概率分布,简记为
累积分布函数
对于一个随机变量X,其累积分布函数是随机变量X 的取值小于等于x的概率。
以连续随机变量X 为例,累积分布函数定义为:
其中p(x)为概率密度函数,标准正态分布的累计分布函数:
随机向量
随机向量是指一组随机变量构成的向量。如果 X1, X2, · · · , Xn 为n个随机变量, 那么称 [X1, X2, · · · , Xn] 为一个 n 维随机向量。一维随机向量称为随机变量。随机向量也分为离散随机向量和连续随机向量。 条件概率分布 对于离散随机向量 (X, Y) ,已知X = x的条件下,随机变量 Y = y 的条件概率为:
对于二维连续随机向量(X, Y ),已知X = x的条件下,随机变量Y = y 的条件概率密度函数为
期望 对于离散变量X,其概率分布为 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定义为
对于连续随机变量X,概率密度函数为p(x),其期望定义为
方差 随机变量X 的方差(variance)用来定义它的概率分布的离散程度,定义为
标准差 随机变量 X 的方差也称为它的二阶矩。X 的根方差或标准差。
协方差 两个连续随机变量X 和Y 的协方差(covariance)用来衡量两个随机变量的分布之间的总体变化性,定义为
协方差经常也用来衡量两个随机变量之间的线性相关性。如果两个随机变量的协方差为0,那么称这两个随机变量是线性不相关。两个随机变量之间没有线性相关性,并非表示它们之间独立的,可能存在某种非线性的函数关系。反之,如果X 与Y 是统计独立的,那么它们之间的协方差一定为0。
随机过程(stochastic process)是一组随机变量Xt 的集合,其中t属于一个索引(index)集合T 。索引集合T 可以定义在时间域或者空间域,但一般为时间域,以实数或正数表示。当t为实数时,随机过程为连续随机过程;当t为整数时,为离散随机过程。日常生活中的很多例子包括股票的波动、语音信号、身高的变化等都可以看作是随机过程。常见的和时间相关的随机过程模型包括贝努力过程、随机游走、马尔可夫过程等。
马尔可夫过程 指一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。
其中X0:t 表示变量集合X0, X1, · · · , Xt,x0:t 为在状态空间中的状态序列。
马尔可夫链 离散时间的马尔可夫过程也称为马尔可夫链(Markov chain)。如果一个马尔可夫链的条件概率
马尔可夫的使用可以看前面一篇写的有意思的文章: 女朋友的心思你能猜得到吗?——马尔可夫链告诉你 随机过程还有高斯过程,比较复杂,这里就不详细说明了。
信息论(information theory)是数学、物理、统计、计算机科学等多个学科的交叉领域。信息论是由 Claude Shannon最早提出的,主要研究信息的量化、存储和通信等方法。在机器学习相关领域,信息论也有着大量的应用。比如特征抽取、统计推断、自然语言处理等。
在信息论中,熵用来衡量一个随机事件的不确定性。假设对一个随机变量X(取值集合为C概率分布为 p(x), x ∈ C )进行编码,自信息I(x)是变量X = x时的信息量或编码长度,定义为 I(x) = − log(p(x)), 那么随机变量X 的平均编码长度,即熵定义为
其中当p(x) = 0时,我们定义0log0 = 0 熵是一个随机变量的平均编码长度,即自信息的数学期望。熵越高,则随机变量的信息越多;熵越低,则信息越少。如果变量X 当且仅当在x时 p(x) = 1 ,则熵为0。也就是说,对于一个确定的信息,其熵为0,信息量也为0。如果其概率分布为一个均匀分布,则熵最大。假设一个随机变量X 有三种可能值x1, x2, x3,不同概率分布对应的熵如下:
联合熵和条件熵 对于两个离散随机变量X 和Y ,假设X 取值集合为X;Y 取值集合为Y,其联合概率分布满足为 p(x, y) ,则X 和Y 的联合熵(Joint Entropy)为
X 和Y 的条件熵为
互信息 互信息(mutual information)是衡量已知一个变量时,另一个变量不确定性的减少程度。两个离散随机变量X 和Y 的互信息定义为
交叉熵和散度 交叉熵 对应分布为p(x)的随机变量,熵H(p)表示其最优编码长度。交叉熵是按照概率分布q 的最优编码对真实分布为p的信息进行编码的长度,定义为
在给定p的情况下,如果q 和p越接近,交叉熵越小;如果q 和p越远,交叉熵就越大。
‘肆’ 程序员必须掌握哪些算法
一.基本算法:
枚举. (poj1753,poj2965)
贪心(poj1328,poj2109,poj2586)
递归和分治法.
递推.
构造法.(poj3295)
模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
图的深度优先遍历和广度优先遍历.
最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)
二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
串 (poj1035,poj3080,poj1936)
排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
简单并查集的应用.
哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)
堆
trie树(静态建树、动态建树) (poj2513)
四.简单搜索
深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
背包问题. (poj1837,poj1276)
型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
几何公式.
叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)
中级(校赛压轴及省赛中等难度):
一.基本算法:
C++的标准模版库的应用. (poj3096,poj3007)
较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
差分约束系统的建立和求解. (poj1201,poj2983)
最小费用最大流(poj2516,poj2516,poj2195)
双连通分量(poj2942)
强连通分支及其缩点.(poj2186)
图的割边和割点(poj3352)
最小割模型、网络流规约(poj3308)
三.数据结构.
线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
静态二叉检索树. (poj2482,poj2352)
树状树组(poj1195,poj3321)
RMQ. (poj3264,poj3368)
并查集的高级应用. (poj1703,2492)
KMP算法. (poj1961,poj2406)
四.搜索
最优化剪枝和可行性剪枝
搜索的技巧和优化 (poj3411,poj1724)
记忆化搜索(poj3373,poj1691)
五.动态规划
较为复杂的动态规划(如动态规划解特别的旅行商TSP问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
记录状态的动态规划. (POJ3254,poj2411,poj1185)
树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
随机化算法(poj3318,poj2454)
杂题(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
坐标离散化.
扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多边形的内核(半平面交)(poj3130,poj3335)
几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高级(regional中等难度):
一.基本算法要求:
代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
保证正确性和高效性. poj3434
二.图算法:
度限制最小生成树和第K最短路. (poj1639)
最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最优比率生成树. (poj2728)
最小树形图(poj3164)
次小生成树.
无向图、有向图的最小环
三.数据结构.
trie图的建立和应用. (poj2778)
LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法(RMQ+dfs)).(poj1330)
双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)
左偏树(可合并堆).
后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)
四.搜索
较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)
四边形不等式理论.
较难的状态DP(poj3133)
六.数学
组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
半平面求交(poj3384,poj2540)
可视图的建立(poj2966)
点集最小圆覆盖.
对踵点(poj2079)
‘伍’ 计算机的二进制是如何计算的!
首先打开电脑的计算器,点查看选择科学型或者程序员,之后打要算的十进制数,打完点左面或者上面选二进制,自动算好。
好吧,我知道可能不是你想要的
‘陆’ 算法和软件的关系,程序员应该学习哪些算法
一.基本算法:
枚举. (poj1753,poj2965)
贪心(poj1328,poj2109,poj2586)
递归和分治法.
递推.
构造法.(poj3295)
模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
图的深度优先遍历和广度优先遍历.
最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)
二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
串 (poj1035,poj3080,poj1936)
排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
简单并查集的应用.
哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)
堆
trie树(静态建树、动态建树) (poj2513)
四.简单搜索
深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
背包问题. (poj1837,poj1276)
型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
几何公式.
叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)
中级(校赛压轴及省赛中等难度):
一.基本算法:
C++的标准模版库的应用. (poj3096,poj3007)
较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
差分约束系统的建立和求解. (poj1201,poj2983)
最小费用最大流(poj2516,poj2516,poj2195)
双连通分量(poj2942)
强连通分支及其缩点.(poj2186)
图的割边和割点(poj3352)
最小割模型、网络流规约(poj3308)