导航:首页 > 程序命令 > hdfs常用命令

hdfs常用命令

发布时间:2022-09-19 19:41:48

1. 大数据分析应该掌握哪些基础知识

java基础语法

· 分支结构if/switch

· 循环结构for/while/do while

· 方法声明和调用

· 方法重载

· 数组的使用

· 命令行参数、可变参数

IDEA

· IDEA常用设置、常用快捷键

· 自定义模板

· 关联Tomcat

· Web项目案例实操

面向对象编程

· 封装、继承、多态、构造器、包

· 异常处理机制

· 抽象类、接口、内部类

· 常有基础API、集合List/Set/Map

· 泛型、线程的创建和启动

· 深入集合源码分析、常见数据结构解析

· 线程的安全、同步和通信、IO流体系

· 反射、类的加载机制、网络编程

Java8/9/10/11新特性

· Lambda表达式、方法引用

· 构造器引用、StreamAPI

· jShell(JShell)命令

· 接口的私有方法、Optional加强

· 局部变量的类型推断

· 更简化的编译运行程序等

MySQL

· DML语言、DDL语言、DCL语言

· 分组查询、Join查询、子查询、Union查询、函数

· 流程控制语句、事务的特点、事务的隔离级别等

JDBC

· 使用JDBC完成数据库增删改查操作

· 批处理的操作

· 数据库连接池的原理及应用

· 常见数据库连接池C3P0、DBCP、Druid等

Maven

· Maven环境搭建

· 本地仓库&中央仓库

· 创建Web工程

· 自动部署

· 持续继承

· 持续部署

linux

· VI/VIM编辑器

· 系统管理操作&远程登录

· 常用命令

· 软件包管理&企业真题

Shell编程

· 自定义变量与特殊变量

· 运算符

· 条件判断

· 流程控制

· 系统函数&自定义函数

· 常用工具命令

· 面试真题

Hadoop

· Hadoop生态介绍

· Hadoop运行模式

· 源码编译

· HDFS文件系统底层详解

· DN&NN工作机制

· HDFS的API操作

· MapRece框架原理

· 数据压缩

· Yarn工作机制

· MapRece案例详解

· Hadoop参数调优

· HDFS存储多目录

· 多磁盘数据均衡

· LZO压缩

· Hadoop基准测试

Zookeeper

· Zookeeper数据结果

· 内部原理

· 选举机制

· Stat结构体

· 监听器

· 分布式安装部署

· API操作

· 实战案例

· 面试真题

· 启动停止脚本

HA+新特性

· HDFS-HA集群配置

Hive

· Hive架构原理

· 安装部署

· 远程连接

· 常见命令及基本数据类型

· DML数据操作

· 查询语句

· Join&排序

· 分桶&函数

· 压缩&存储

· 企业级调优

· 实战案例

· 面试真题

Flume

· Flume架构

· Agent内部原理

· 事务

· 安装部署

· 实战案例

· 自定义Source

· 自定义Sink

· Ganglia监控

Kafka

· 消息队列

· Kafka架构

· 集群部署

· 命令行操作

· 工作流程分析

· 分区分配策略

· 数据写入流程

· 存储策略

· 高阶API

· 低级API

· 拦截器

· 监控

· 高可靠性存储

· 数据可靠性和持久性保证

· ISR机制

· Kafka压测

· 机器数量计算

· 分区数计算

· 启动停止脚本

DataX

· 安装

· 原理

· 数据一致性

· 空值处理

· LZO压缩处理

Scala

· Scala基础入门

· 函数式编程

· 数据结构

· 面向对象编程

· 模式匹配

· 高阶函数

· 特质

· 注解&类型参数

· 隐式转换

· 高级类型

· 案例实操

Spark Core

· 安装部署

· RDD概述

· 编程模型

· 持久化&检查点机制

· DAG

· 算子详解

· RDD编程进阶

· 累加器&广播变量

Spark SQL

· SparkSQL

· DataFrame

· DataSet

· 自定义UDF&UDAF函数

Spark Streaming

· SparkStreaming

· 背压机制原理

· Receiver和Direct模式原理

· Window原理及案例实操

· 7x24 不间断运行&性能考量

Spark内核&优化

· 内核源码详解

· 优化详解

Hbase

· Hbase原理及架构

· 数据读写流程

· API使用

· 与Hive和Sqoop集成

· 企业级调优

Presto

· Presto的安装部署

· 使用Presto执行数仓项目的即席查询模块

Ranger2.0

· 权限管理工具Ranger的安装和使用

Azkaban3.0

· 任务调度工具Azkaban3.0的安装部署

· 使用Azkaban进行项目任务调度,实现电话邮件报警

Kylin3.0

· Kylin的安装部署

· Kylin核心思想

· 使用Kylin对接数据源构建模型

Atlas2.0

· 元数据管理工具Atlas的安装部署

Zabbix

· 集群监控工具Zabbix的安装部署

DolphinScheler

· 任务调度工具DolphinScheler的安装部署

· 实现数仓项目任务的自动化调度、配置邮件报警

Superset

· 使用SuperSet对数仓项目的计算结果进行可视化展示

Echarts

· 使用Echarts对数仓项目的计算结果进行可视化展示

Redis

· Redis安装部署

· 五大数据类型

· 总体配置

· 持久化

· 事务

· 发布订阅

· 主从复制

Canal

· 使用Canal实时监控MySQL数据变化采集至实时项目

Flink

· 运行时架构

· 数据源Source

· Window API

· Water Mark

· 状态编程

· CEP复杂事件处理

Flink SQL

· Flink SQL和Table API详细解读

Flink 内核

· Flink内核源码讲解

· 经典面试题讲解

Git&GitHub

· 安装配置

· 本地库搭建

· 基本操作

· 工作流

· 集中式

ClickHouse

· ClickHouse的安装部署

· 读写机制

· 数据类型

· 执行引擎

DataV

· 使用DataV对实时项目需求计算结果进行可视化展示

sugar

· 结合Springboot对接网络sugar实现数据可视化大屏展示

Maxwell

· 使用Maxwell实时监控MySQL数据变化采集至实时项目

ElasticSearch

· ElasticSearch索引基本操作、案例实操

Kibana

· 通过Kibana配置可视化分析

Springboot

· 利用Springboot开发可视化接口程序

2. 数据分析需要掌握哪些知识

Java基础语法

  1. · 分支结构if/switch

  2. · 循环结构for/while/do while

  3. · 方法声明和调用

  4. · 方法重载

  5. · 数组的使用

  6. · 命令行参数、可变参数

IDEA

  1. · IDEA常用设置、常用快捷键

  2. · 自定义模板

  3. · 关联Tomcat

  4. · Web项目案例实操

面向对象编程

  1. · 封装、继承、多态、构造器、包

  2. · 异常处理机制

  3. · 抽象类、接口、内部类

  4. · 常有基础API、集合List/Set/Map

  5. · 泛型、线程的创建和启动

  6. · 深入集合源码分析、常见数据结构解析

  7. · 线程的安全、同步和通信、IO流体系

  8. · 反射、类的加载机制、网络编程

Java8/9/10/11
新特性

  1. · Lambda表达式、方法引用

  2. · 构造器引用、StreamAPI

  3. · jShell(JShell)命令

  4. · 接口的私有方法、Optional加强

  5. · 局部变量的类型推断

  6. · 更简化的编译运行程序等

MySQL

  1. · DML语言、DDL语言、DCL语言

  2. · 分组查询、Join查询、子查询、Union查询、函数

  3. · 流程控制语句、事务的特点、事务的隔离级别等

JDBC

  1. · 使用JDBC完成数据库增删改查操作

  2. · 批处理的操作

  3. · 数据库连接池的原理及应用

  4. · 常见数据库连接池C3P0、DBCP、Druid等

Maven

  1. · Maven环境搭建

  2. · 本地仓库&中央仓库

  3. · 创建Web工程

  4. · 自动部署

  5. · 持续继承

  6. · 持续部署

Linux

  1. · VI/VIM编辑器

  2. · 系统管理操作&远程登录

  3. · 常用命令

  4. · 软件包管理&企业真题

Shell编程

  1. · 自定义变量与特殊变量

  2. · 运算符

  3. · 条件判断

  4. · 流程控制

  5. · 系统函数&自定义函数

  6. · 常用工具命令

  7. · 面试真题

Hadoop

  1. · Hadoop生态介绍

  2. · Hadoop运行模式

  3. · 源码编译

  4. · HDFS文件系统底层详解

  5. · DN&NN工作机制

  6. · HDFS的API操作

  7. · MapRece框架原理

  8. · 数据压缩

  9. · Yarn工作机制

  10. · MapRece案例详解

  11. · Hadoop参数调优

  12. · HDFS存储多目录

  13. · 多磁盘数据均衡

  14. · LZO压缩

  15. · Hadoop基准测试

Zookeeper

  1. · Zookeeper数据结果

  2. · 内部原理

  3. · 选举机制

  4. · Stat结构体

  5. · 监听器

  6. · 分布式安装部署

  7. · API操作

  8. · 实战案例

  9. · 面试真题

  10. · 启动停止脚本

HA+新特性

  1. · HDFS-HA集群配置

Hive

  1. · Hive架构原理

  2. · 安装部署

  3. · 远程连接

  4. · 常见命令及基本数据类型

  5. · DML数据操作

  6. · 查询语句

  7. · Join&排序

  8. · 分桶&函数

  9. · 压缩&存储

  10. · 企业级调优

  11. · 实战案例

  12. · 面试真题

Flume

  1. · Flume架构

  2. · Agent内部原理

  3. · 事务

  4. · 安装部署

  5. · 实战案例

  6. · 自定义Source

  7. · 自定义Sink

  8. · Ganglia监控

Kafka

  1. · 消息队列

  2. · Kafka架构

  3. · 集群部署

  4. · 命令行操作

  5. · 工作流程分析

  6. · 分区分配策略

  7. · 数据写入流程

  8. · 存储策略

  9. · 高阶API

  10. · 低级API

  11. · 拦截器

  12. · 监控

  13. · 高可靠性存储

  14. · 数据可靠性和持久性保证

  15. · ISR机制

  16. · Kafka压测

  17. · 机器数量计算

  18. · 分区数计算

  19. · 启动停止脚本

DataX

  1. · 安装

  2. · 原理

  3. · 数据一致性

  4. · 空值处理

  5. · LZO压缩处理

Scala

  1. · Scala基础入门

  2. · 函数式编程

  3. · 数据结构

  4. · 面向对象编程

  5. · 模式匹配

  6. · 高阶函数

  7. · 特质

  8. · 注解&类型参数

  9. · 隐式转换

  10. · 高级类型

  11. · 案例实操

Spark Core

  1. · 安装部署

  2. · RDD概述

  3. · 编程模型

  4. · 持久化&检查点机制

  5. · DAG

  6. · 算子详解

  7. · RDD编程进阶

  8. · 累加器&广播变量

Spark SQL

  1. · SparkSQL

  2. · DataFrame

  3. · DataSet

  4. · 自定义UDF&UDAF函数

Spark Streaming

  1. · SparkStreaming

  2. · 背压机制原理

  3. · Receiver和Direct模式原理

  4. · Window原理及案例实操

  5. · 7x24 不间断运行&性能考量

Spark内核&优化

  1. · 内核源码详解

  2. · 优化详解

Hbase

  1. · Hbase原理及架构

  2. · 数据读写流程

  3. · API使用

  4. · 与Hive和Sqoop集成

  5. · 企业级调优

Presto

  1. · Presto的安装部署

  2. · 使用Presto执行数仓项目的即席查询模块

Ranger2.0

  1. · 权限管理工具Ranger的安装和使用

Azkaban3.0

  1. · 任务调度工具Azkaban3.0的安装部署

  2. · 使用Azkaban进行项目任务调度,实现电话邮件报警

Kylin3.0

  1. · Kylin的安装部署

  2. · Kylin核心思想

  3. · 使用Kylin对接数据源构建模型

Atlas2.0

  1. · 元数据管理工具Atlas的安装部署

Zabbix

  1. · 集群监控工具Zabbix的安装部署

DolphinScheler

  1. · 任务调度工具DolphinScheler的安装部署

  2. · 实现数仓项目任务的自动化调度、配置邮件报警

Superset

  1. · 使用SuperSet对数仓项目的计算结果进行可视化展示

Echarts

  1. · 使用Echarts对数仓项目的计算结果进行可视化展示

Redis

  1. · Redis安装部署

  2. · 五大数据类型

  3. · 总体配置

  4. · 持久化

  5. · 事务

  6. · 发布订阅

  7. · 主从复制

Canal

  1. · 使用Canal实时监控MySQL数据变化采集至实时项目

Flink

  1. · 运行时架构

  2. · 数据源Source

  3. · Window API

  4. · Water Mark

  5. · 状态编程

  6. · CEP复杂事件处理

Flink SQL

  1. · Flink SQL和Table API详细解读

Flink 内核

  1. · Flink内核源码讲解

  2. · 经典面试题讲解

Git&GitHub

  1. · 安装配置

  2. · 本地库搭建

  3. · 基本操作

  4. · 工作流

  5. · 集中式

ClickHouse

  1. · ClickHouse的安装部署

  2. · 读写机制

  3. · 数据类型

  4. · 执行引擎

DataV

  1. · 使用DataV对实时项目需求计算结果进行可视化展示

sugar

  1. · 结合Springboot对接网络sugar实现数据可视化大屏展示

Maxwell

  1. · 使用Maxwell实时监控MySQL数据变化采集至实时项目

ElasticSearch

  1. · ElasticSearch索引基本操作、案例实操

Kibana

  1. · 通过Kibana配置可视化分析

Springboot

  1. · 利用Springboot开发可视化接口程序

3. hadoop 集群 怎么设置job 并行工作

4 hadoop启动
4.1 格式化一个新的分布式文件系统
先格式化一个新的分布式文件系统
$ cd hadoop-0.20.203
$ bin/hadoop namenode -format
成功情况下系统输出:

12/02/06 00:46:50 INFO namenode.NameNode:STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = ubuntu/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.20.203.0
STARTUP_MSG: build =http://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20-security-203-r 1099333; compiled by 'oom' on Wed May 4 07:57:50 PDT 2011
************************************************************/

12/02/0600:46:50 INFO namenode.FSNamesystem: fsOwner=root,root
12/02/06 00:46:50 INFO namenode.FSNamesystem:supergroup=supergroup
12/02/06 00:46:50 INFO namenode.FSNamesystem:isPermissionEnabled=true
12/02/06 00:46:50 INFO common.Storage: Imagefile of size 94 saved in 0 seconds.
12/02/06 00:46:50 INFO common.Storage: Storagedirectory /opt/hadoop/hadoopfs/name1 has been successfully formatted.
12/02/06 00:46:50 INFO common.Storage: Imagefile of size 94 saved in 0 seconds.
12/02/06 00:46:50 INFO common.Storage: Storagedirectory /opt/hadoop/hadoopfs/name2 has been successfully formatted.
12/02/06 00:46:50 INFO namenode.NameNode:SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode atv-jiwan-ubuntu-0/127.0.0.1
************************************************************/

查看输出保证分布式文件系统格式化成功
执行完后可以到master机器上看到/home/hadoop//name1和/home/hadoop//name2两个目录。在主节点master上面启动hadoop,主节点会启动所有从节点的hadoop。
4.2 启动所有节点
启动方式1:
$ bin/start-all.sh (同时启动HDFS和Map/Rece)
系统输出:

starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-ubuntu.out
node2: starting datanode, loggingto /usr/local/hadoop/logs/hadoop-hadoop-datanode-ubuntu.out
node3: starting datanode, loggingto /usr/local/hadoop/logs/hadoop-hadoop-datanode-ubuntu.out
node1: starting secondarynamenode,logging to /usr/local/hadoop/logs/hadoop-hadoop-secondarynamenode-ubuntu.out
starting jobtracker, logging to/usr/local/hadoop/logs/hadoop-hadoop-jobtracker-ubuntu.out
node2: starting tasktracker,logging to /usr/local/hadoop/logs/hadoop-hadoop-tasktracker-ubuntu.out
node3: starting tasktracker,logging to /usr/local/hadoop/logs/hadoop-hadoop-tasktracker-ubuntu.out
As you can see in slave's output above, it will automatically format it's storage directory(specified by dfs.data.dir) if it is not formattedalready. It will also create the directory if it does not exist yet.

执行完后可以到master(node1)和slave(node1,node2)机器上看到/home/hadoop/hadoopfs/data1和/home/hadoop/data2两个目录。
启动方式2:
启动Hadoop集群需要启动HDFS集群和Map/Rece集群。
在分配的NameNode上,运行下面的命令启动HDFS:
$ bin/start-dfs.sh(单独启动HDFS集群)
bin/start-dfs.sh脚本会参照NameNode上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上启动DataNode守护进程。
在分配的JobTracker上,运行下面的命令启动Map/Rece:
$bin/start-mapred.sh (单独启动Map/Rece)
bin/start-mapred.sh脚本会参照JobTracker上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上启动TaskTracker守护进程。

4.3 关闭所有节点
从主节点master关闭hadoop,主节点会关闭所有从节点的hadoop。
$ bin/stop-all.sh
Hadoop守护进程的日志写入到 ${HADOOP_LOG_DIR} 目录 (默认是 ${HADOOP_HOME}/logs).
${HADOOP_HOME}就是安装路径.
5 .测试
1)浏览NameNode和JobTracker的网络接口,它们的地址默认为:
NameNode - http://node1:50070/
JobTracker - http://node2:50030/
3) 使用netstat –nat查看端口49000和49001是否正在使用。
4) 使用jps查看进程
要想检查守护进程是否正在运行,可以使用 jps 命令(这是用于 JVM 进程的ps 实用程序)。这个命令列出 5 个守护进程及其进程标识符。
5)将输入文件拷贝到分布式文件系统:
$ bin/hadoop fs -mkdir input
$ bin/hadoop fs -put conf/core-site.xml input
运行发行版提供的示例程序:
$ bin/hadoop jar hadoop-0.20.2-examples.jar grep input output 'dfs[a-z.]+'
6.补充
Q: bin/hadoop jar hadoop-0.20.2-examples.jar grep input output 'dfs[a-z.]+' 什么意思啊?
A: bin/hadoop jar(使用hadoop运行jar包) hadoop-0.20.2_examples.jar(jar包的名字) grep (要使用的类,后边的是参数)input output 'dfs[a-z.]+'
整个就是运行hadoop示例程序中的grep,对应的hdfs上的输入目录为input、输出目录为output。
Q: 什么是grep?
A: A map/rece program that counts the matches of a regex in the input.
查看输出文件:
将输出文件从分布式文件系统拷贝到本地文件系统查看:
$ bin/hadoop fs -get output output
$ cat output/*
或者
在分布式文件系统上查看输出文件:
$ bin/hadoop fs -cat output/*
统计结果:
root@v-jiwan-ubuntu-0:~/hadoop/hadoop-0.20.2-bak/hadoop-0.20.2#bin/hadoop fs -cat output/part-00000
3 dfs.class
2 dfs.period
1 dfs.file
1 dfs.replication
1 dfs.servers
1 dfsadmin
7. HDFS常用操作

hadoopdfs -ls 列出HDFS下的文件
hadoop dfs -ls in 列出HDFS下某个文档中的文件
hadoop dfs -put test1.txt test 上传文件到指定目录并且重新命名,只有所有的DataNode都接收完数据才算成功
hadoop dfs -get in getin 从HDFS获取文件并且重新命名为getin,同put一样可操作文件也可操作目录
hadoop dfs -rmr out 删除指定文件从HDFS上
hadoop dfs -cat in/* 查看HDFS上in目录的内容
hadoop dfsadmin -report 查看HDFS的基本统计信息,结果如下
hadoop dfsadmin -safemode leave 退出安全模式
hadoop dfsadmin -safemode enter 进入安全模式

8.添加节点
可扩展性是HDFS的一个重要特性,首先在新加的节点上安装hadoop,然后修改$HADOOP_HOME/conf/master文件,加入 NameNode主机名,然后在NameNode节点上修改$HADOOP_HOME/conf/slaves文件,加入新加节点主机名,再建立到新加节点无密码的SSH连接
运行启动命令:
start-all.sh
然后可以通过http://(Masternode的主机名):50070查看新添加的DataNode
9负载均衡
start-balancer.sh,可以使DataNode节点上选择策略重新平衡DataNode上的数据块的分布

结束语:遇到问题时,先查看logs,很有帮助。

10 SHell自动安装脚本
#!/bin/bash

#validate user or group
validate() {
if [ 'id -u' == 0 ];then
echo "must not be root!"
exit 0
else
echo "---------welcome to hadoop---------"
fi
}

#hadoop install
hd-dir() {
if [ ! -d /home/hadoop/ ];then
mkdir /home/hadoop/
else
echo "download hadoop will begin"
fi
}

download-hd() {
wget -c http://archive.apache.org/dist/hadoop/core/stable/hadoop-1.0.4.tar.gz -O /home/hadoop/hadoop-1.0.4.tar.gz
tar -xzvf /home/hadoop/hadoop-1.0.4.tar.gz -C /home/hadoop
rm /home/hadoop/hadoop-1.0.4.tar.gz
Ln -s /home/hadoop/hadoop-1.0.4 /home/hadoop/hadoop1.0.4
}

#hadoop conf
hd-conf() {
echo "export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-i386" >> /home/hadoop/hadoop1.0.4/conf/hadoop-env.sh
echo "#set path jdk" >> /home/hadoop/.profile
echo "export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-i386" >> /home/hadoop/.profile
echo "#hadoop path" >> /home/hadoop/.profile
echo "export HADOOP_HOME=/home/hadoop/hadoop1.0.4" >> /home/hadoop/.profile
echo "PATH=$PATH:$HADOOP_HOME/bin:$JAVA_HOME/bin" >> /home/hadoop/.profile
echo "HADOOP_HOME_WARN_SUPPRESS=1" >> /home/hadoop/.profile
#hadoop core-site.xml
echo "<configuration>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<name>fs.default.name</name>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<value>hdfs://hadoop-master:9000" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<name>hadoop.tmp.dir</name>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "<value>/home/hadoop/tmp</value>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
echo "</configuration>" >> /home/hadoop/hadoop1.0.4/conf/core-site.xml
#hadoop hdfs-site.xml

echo "<configuration>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<name>dfs.name.dir</name>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<value>/home/hadoop/name</value>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<name>dfs.data.dir</name>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<value>/home/hadoop/data</value>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<name>dfs.replication</name>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "<value>1</value>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
echo "</configuration>" >> /home/hadoop/hadoop1.0.4/conf/hdfs-site.xml
# hadoop mapred-site.xml

echo "<configuration>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
echo "<property>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
echo "<name>mapred.job.tracker</name>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
echo "<value>hadoop-master:9001</value>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
echo "</property>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
echo "</configuration>" >> /home/hadoop/hadoop1.0.4/conf/mapred-site.xml
#hadoop master
echo "hadoop-master" >> /home/hadoop/hadoop1.0.4/conf/masters

#hadoop slaves
echo "hadoop-master" >> /home/hadoop/hadoop1.0.4/conf/slaves
source /home/hadoop/.profile
}

hd-start() {
hadoop namenode -format
}

yes-or-no() {
echo "Is your name $* ?"
while true
do
echo -n "Enter yes or no: "
read x
case "$x" in
y | yes ) return 0;;
n | no ) return 1;;
* ) echo "Answer yes or no";;
esac
done
}

echo "Original params are $*"

if yes-or-no "$1"
then
echo "HI $1,nice name!"
validate
hd-dir
download-hd
hd-conf
else
echo "Never mind!"
fi

4. 大数据:Hadoop入门

什么是大数据:
(1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等。这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB).
2.大数据的特点:
(1.)体量巨大。按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级。
(2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,地理位置信息,交易数据,社交数据等。
(3.)价值密度低。有价值的数据仅占到总数据的一小部分。比如一段视屏中,仅有几秒的信息是有价值的。
(4.)产生和要求处理速度快。这是大数据区与传统数据挖掘最显着的特征。
3.除此之外还有其他处理系统可以处理大数据。
Hadoop (开源)
Spark(开源)
Storm(开源)
MongoDB(开源)
IBM PureDate(商用)
Oracle Exadata(商用)
SAP Hana(商用)
Teradata AsterData(商用)
EMC GreenPlum(商用)
HP Vertica(商用)
注:这里我们只介绍Hadoop。
二:Hadoop体系结构
Hadoop来源:
Hadoop源于Google在2003到2004年公布的关于GFS(Google File System),MapRece和BigTable的三篇论文,创始人Doug Cutting。Hadoop现在是Apache基金会顶级项目,“
Hadoop”一个虚构的名字。由Doug Cutting的孩子为其黄色玩具大象所命名。
Hadoop的核心:
(1.)HDFS和MapRece是Hadoop的两大核心。通过HDFS来实现对分布式储存的底层支持,达到高速并行读写与大容量的储存扩展。
(2.)通过MapRece实现对分布式任务进行处理程序支持,保证高速分区处理数据。
3.Hadoop子项目:
(1.)HDFS:分布式文件系统,整个Hadoop体系的基石。
(2.)MapRece/YARN:并行编程模型。YARN是第二代的MapRece框架,从Hadoop 0.23.01版本后,MapRece被重构,通常也称为MapRece V2,老MapRece也称为 MapRece V1。
(3.)Hive:建立在Hadoop上的数据仓库,提供类似SQL语音的查询方式,查询Hadoop中的数据,
(5.)HBase:全称Hadoop Database,Hadoop的分布式的,面向列的数据库,来源于Google的关于BigTable的论文,主要用于随机访问,实时读写的大数据。
(6.)ZooKeeper:是一个为分布式应用所设计的协调服务,主要为用户提供同步,配置管理,分组和命名等服务,减轻分布式应用程序所承担的协调任务。
还有其它特别多其它项目这里不做一一解释了。
三:安装Hadoop运行环境
用户创建:
(1.)创建Hadoop用户组,输入命令:
groupadd hadoop
(2.)创建hser用户,输入命令:
useradd –p hadoop hser
(3.)设置hser的密码,输入命令:
passwd hser
按提示输入两次密码
(4.)为hser用户添加权限,输入命令:
#修改权限
chmod 777 /etc/sudoers
#编辑sudoers
Gedit /etc/sudoers
#还原默认权限
chmod 440 /etc/sudoers
先修改sudoers 文件权限,并在文本编辑窗口中查找到行“root ALL=(ALL)”,紧跟后面更新加行“hser ALL=(ALL) ALL”,将hser添加到sudoers。添加完成后切记还原默认权限,否则系统将不允许使用sudo命令。
(5.)设置好后重启虚拟机,输入命令:
Sudo reboot
重启后切换到hser用户登录
安装JDK
(1.)下载jdk-7u67-linux-x64.rpm,并进入下载目录。
(2.)运行安装命令:
Sudo rpm –ivh jdk-7u67-linux-x64.rpm
完成后查看安装路径,输入命令:
Rpm –qa jdk –l
记住该路径,
(3.)配置环境变量,输入命令:
Sudo gedit /etc/profile
打开profile文件在文件最下面加入如下内容
export JAVA_HOME=/usr/java/jdk.7.0.67
export CLASSPATH=$ JAVA_HOME/lib:$ CLASSPATH
export PATH=$ JAVA_HOME/bin:$PATH
保存后关闭文件,然后输入命令使环境变量生效:
Source /etc/profile
(4.)验证JDK,输入命令:
Java –version
若出现正确的版本则安装成功。
配置本机SSH免密码登录:
(1.)使用ssh-keygen 生成私钥与公钥文件,输入命令:
ssh-keygen –t rsa
(2.)私钥留在本机,公钥发给其它主机(现在是localhost)。输入命令:
ssh--id localhost
(3.)使用公钥来登录输入命令:
ssh localhost
配置其它主机SSH免密登录
(1.)克隆两次。在VMware左侧栏中选中虚拟机右击,在弹出的快捷键菜单中选中管理---克隆命令。在克隆类型时选中“创建完整克隆”,单击“下一步”,按钮直到完成。
(2.)分别启动并进入三台虚拟机,使用ifconfig查询个主机IP地址。
(3.)修改每台主机的hostname及hosts文件。
步骤1:修改hostname,分别在各主机中输入命令。
Sudo gedit /etc/sysconfig/network
步骤2:修改hosts文件:
sudo gedit /etc/hosts
步骤3:修改三台虚拟机的IP
第一台对应node1虚拟机的IP:192.168.1.130
第二台对应node2虚拟机的IP:192.168.1.131
第三台对应node3虚拟机的IP:192.168.1.132
(4.)由于已经在node1上生成过密钥对,所有现在只要在node1上输入命令:
ssh--id node2
ssh--id node3
这样就可以将node1的公钥发布到node2,node3。
(5.)测试SSH,在node1上输入命令:
ssh node2
#退出登录
exit
ssh node3
exit
四:Hadoop完全分布式安装
1. Hadoop有三种运行方式:
(1.)单机模式:无须配置,Hadoop被视为一个非分布式模式运行的独立Java进程
(2.)伪分布式:只有一个节点的集群,这个节点即是Master(主节点,主服务器)也是Slave(从节点,从服务器),可在此单节点上以不同的java进程模拟分布式中的各类节点
(3.)完全分布式:对于Hadoop,不同的系统会有不同的节点划分方式。
2.安装Hadoop
(1.)获取Hadoop压缩包hadoop-2.6.0.tar.gz,下载后可以使用VMWare Tools通过共享文件夹,或者使用Xftp工具传到node1。进入node1 将压缩包解压到/home/hser目录下,输入命令: #进入HOME目录即:“/home/hser”
cd ~
tar –zxvf hadoop-2.6.0.tar.gz
(2.)重命名hadoop输入命令:
mv hadoop-2.6.0 hadoop
(3.)配置Hadoop环境变量,输入命令:
Sudo gedit /etc/profile
将以下脚本加到profile内:
#hadoop
export HADOOP_HOME=/home/hser/hadoop
export PATH=$HADOOP_HOME/bin:$PATH
保存关闭,最后输入命令使配置生效
source /etc/profile
注:node2,和node3都要按照以上配置进行配置。
3.配置Hadoop
(1.)hadoop-env.sh文件用于指定JDK路径。输入命令:
[hser@node1 ~]$ cd ~/hadoop/etc/hadoop
[hser@node1 hadoop]$ gedit hadoop-env.sh
然后增加如下内容指定jDK路径。
export JAVA_HOME=/usr/java/jdk1.7.0_67
(2.)打开指定JDK路径,输入命令:
export JAVA_HOME=/usr/java/jdk1.7.0_67
(4.)core-site.xml:该文件是Hadoop全局配置,打开并在元素中增加配置属性如下:

fs.defaultFs hdfs://node1:9000 hadoop.tmp.dir file:/home/hser/hadoop/tmp 这里给出了两个常用的配置属性,fs.defaultFS表示客户端连接HDFS时,默认路径前缀,9000是HDFS工作的端口。Hadoop.tmp.dir如不指定会保存到系统的默认临时文件目录/tmp中。 (5.)hdfs-site.xml:该文件是hdfs的配置。打开并在元素中增加配置属性。 (6.)mapred-site.xml:该文件是MapRece的配置,可从模板文件mapred-site.xml.template中复制打开并在元素中增加配置。 (7.)yarn-site.xml:如果在mapred-site.xml配置了使用YARN框架,那么YARN框架就使用此文件中的配置,打开并在元素中增加配置属性。 (8.)复制这七个命令到node2,node3。输入命令如下: scp –r /home/hser/hadoop/etc/hadoop/ hser@node2:/home/hser/hadoop/etc/ scp –r /home/hser/hadoop/etc/hadoop/ hser@node3:/home/hser/hadoop/etc/ 4.验证: 下面验证hadoop是否正确 (1.)在Master主机(node1)上格式化NameNode。输入命令: [hser@node1 ~]$ cd ~/hadoop [hser@node1 hadoop]$ bin/hdfs namenode –format (2)关闭node1,node2 ,node3,系统防火墙并重启虚拟机。输入命令: service iptables stop sudo chkconfig iptables off reboot (3.)输入以下启动HDFS: [hser@node1 ~]$ cd ~/hadoop (4.)启动所有 [hser@node1 hadoop]$ sbin/start-all.sh (5.)查看集群状态: [hser@node1 hadoop]$ bin/hdfs dfsadmin –report (6.)在浏览器中查看hdfs运行状态,网址:http://node1:50070 (7.)停止Hadoop。输入命令: [hser@node1 hadoop]$ sbin/stop-all.sh 五:Hadoop相关的shell操作 (1.)在操作系统中/home/hser/file目录下创建file1.txt,file2.txt可使用图形界面创建。 file1.txt输入内容: Hello World hi HADOOP file2.txt输入内容 Hello World hi CHIAN (2.)启动hdfs后创建目录/input2 [hser@node1 hadoop]$ bin/hadoop fs –mkdir /input2 (3.)将file1.txt.file2.txt保存到hdfs中: [hser@node1 hadoop]$ bin/hadoop fs –put -/file/file*.txt /input2/ (4.)[hser@node1 hadoop]$ bin/hadoop fs –ls /input2

5. hadoop中命令经常含有-fs,-dfs,fs和dfs有什么区别作用是什么

You can see definitions of the two commands (hadoop fs & hadoop dfs) in
可以看一下hadoop的源代码

$HADOOP_HOME/bin/hadoop
...elif [ "$COMMAND" = "datanode" ] ; then CLASS='org.apache.hadoop.hdfs.server.datanode.DataNode' HADOOP_OPTS="$HADOOP_OPTS $HADOOP_DATANODE_OPTS"elif [ "$COMMAND" = "fs" ] ; then CLASS=org.apache.hadoop.fs.FsShell HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "dfs" ] ; then CLASS=org.apache.hadoop.fs.FsShell HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "dfsadmin" ] ; then CLASS=org.apache.hadoop.hdfs.tools.DFSAdmin HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"...
So, they are exactly the same.
所以,发现两者是完全一样的功能。

谢谢

6. 熟悉常用的 Linux 操作和 Hadoop 操作

1.切换到当前目录的上一级目录
cd ..
2.切换到当前登录 Linux 系统的用户自己的主文件夹
cd ~
3.进入/tmp 目录,创建目录 a1/a2/a3/a4。
mkdir a1/a2/a3/a4 -p
4.删除目录
rmdir a
rmdir a1/a2/a3/a4 -p
5.cp 命令:复制文件或目录
(1) 将当前用户的主文件夹下的文件.bashrc 复制到目录“/usr”下,并重命名为 bashrc1
sudo cp .bashrc /usr/bashrc1
(2) 在目录“/tmp”下新建目录 test,再把这个目录复制到“/usr”目录下
cd /tmp
mkdir test
sudo cp /tmp/test /usr -r
6.mv 命令:移动文件与目录,或更名
(1) 将“/usr”目录下的文件 bashrc1 移动到“/usr/test”目录下
sudo mv /usr/bashrc1 /usr/test
(2) 将“/usr”目录下的 test 目录重命名为 test2
sudo mv /usr/test /usr/test2
7.rm 命令:移除文件或目录
(1) 将“/usr/test2”目录下的 bashrc1 文件删除
sudo rm /usr/test2/bashrc1
(2) 将“/usr”目录下的 test2 目录删除
sudo rm -rf /usr/test2
8.cat 命令:查看文件内容查看当前用户主文件夹下的.bashrc 文件内容
cat .bashrc
9.tac 命令:反向查看文件内容反向查看当前用户主文件夹下的.bashrc 文件的内容
tac .bashrc
10.more 命令:一页一页翻动查看翻页查看当前用户主文件夹下的.bashrc 文件的内容
more .bashrc
11.head 命令:取出前面几行
(1) 查看当前用户主文件夹下.bashrc 文件内容前 20 行
head -n20 .bashrc
(2)查看当前用户主文件夹下.bashrc 文件内容,后面 50 行不显示,只显示前面几行
head -n -50 .bashrc
12.tail 命令:取出后面几行
(1)查看当前用户主文件夹下.bashrc 文件内容最后 20 行
tail -n20 .bashrc
(2)查看当前用户主文件夹下.bashrc 文件内容,并且只列出 50 行以后的数据
tail -n -50 .bashrc
13.touch 命令:修改文件时间或创建新文件
(1) 在“/tmp”目录下创建一个空文件 hello,并查看文件时间
touch hello
stat hello
(2)修改 hello 文件,将文件时间整为 5 天前
touch -d "2019-3-26" hello
stat hello
14.chown 命令:修改文件所有者权限将 hello 文件所有者改为 root 帐号,并查看属性
sudo chown root hello
ls -l hello
15.find 命令:文件查找找出主文件夹下文件名为.bashrc 的文件
find .bashrc
16.tar 命令:压缩命令
(1) 在根目录“/”下新建文件夹 test,然后在根目录“/”下打包成 test.tar.gz
tar -zcvf test.tar.gz test/
(2) 把上面的 test.tar.gz 压缩包,解压缩到“/tmp”目录
tar -zxvf test.tar.gz
17.grep 命令:查找字符串从“~/.bashrc”文件中查找字符串'examples'
grep -rn "examples" .bashrc
18.使用 hadoop 用户登录 Linux 系统,启动 Hadoop(Hadoop 的安装目录为“/usr/local/hadoop”),为 hadoop 用户在 HDFS 中创建用户目录“/user/hadoop”
./bin/hadoop fs -mkdir -p /usr/hadoop
19.接着在 HDFS 的目录“/user/hadoop”下,创建 test 文件夹,并查看文件列表
./bin/hdfs dfs -mkdir test
./bin/hadoop fs -ls
20.将 Linux 系统本地的“~/.bashrc”文件上传到 HDFS 的 test 文件夹中,并查看 test

./bin/hadoop fs -put ~/.bashrc test

./bin/hadoop fs -ls test
21.将 HDFS 文件夹 test 复制到 Linux 系统本地文件系统的“/usr/local/hadoop”目录下

参考: 1

7. 大数据云计算好不好学习

说一下大数据的四个典型的特征:

第一章:Hadoop

在大数据存储和计算中Hadoop可以算是开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚这些是什么:

自己学会如何搭建Hadoop,先让它跑起来。建议先使用安装包命令行安装,不要使用管理工具安装。现在都用Hadoop 2.0。

目录操作命令;上传、下载文件命令;提交运行MapRece示例程序;打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。知道Hadoop的系统日志在哪里。

以上完成之后,就应该去了解他们的原理了:

MapRece:如何分而治之;HDFS:数据到底在哪里,究竟什么才是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

如果有合适的学习网站,视频就去听课,如果没有或者比较喜欢书籍,也可以啃书。当然最好的方法是先去搜索出来这些是干什么的,大概有了概念之后,然后再去听视频。

第二章:更高效的WordCount

在这里,一定要学习SQL,它会对你的工作有很大的帮助。

就像是你写(或者抄)的WordCount一共有几行代码?但是你用SQL就非常简单了,例如:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,而SQL一行搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

另外就是SQL On Hadoop之Hive于大数据而言一定要学习的。

什么是Hive?

官方解释如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。

为什么说Hive是数据仓库工具,而不是数据库工具呢?

有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

了解了它的作用之后,就是安装配置Hive的环节,当可以正常进入Hive命令行是,就是安装配置成功了。

了解Hive是怎么工作的

学会Hive的基本命令:

创建、删除表;加载数据到表;下载Hive表的数据;

MapRece的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用Java程序统计出现次数最多的10个单词及次数);

HDS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

自己会写简单的MapRece程序,运行出现问题,知道在哪里查看日志;

会写简单的Select、Where、group by等SQL语句;

Hive SQL转换成MapRece的大致流程;

Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;

从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapRece是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapRece,提交运行。

此时,你的”大数据平台”是这样的:那么问题来了,海量数据如何到HDFS上呢?

第三章:数据采集

把各个数据源的数据采集到Hadoop上。

3.1 HDFS PUT命令

这个在前面你应该已经使用过了。put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。建议熟练掌握。

3.2 HDFS API

HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。建议了解原理,会写Demo。

3.3 Sqoop

Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库,Oracle、MySQL、SQLServer等之间进行数据交换的开源框架。就像Hive把SQL翻译成MapRece一样,Sqoop把你指定的参数翻译成MapRece,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。了解Sqoop常用的配置参数和方法。

使用Sqoop完成从MySQL同步数据到HDFS;使用Sqoop完成从MySQL同步数据到Hive表;如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

3.4 Flume

Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

下载和配置Flume。使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

3.5 阿里开源的DataX

现在DataX已经是3.0版本,支持很多数据源。

第四章:把Hadoop上的数据搞到别处去

Hive和MapRece进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?其实,此处的方法和第三章基本一致的。

HDFS GET命令:把HDFS上的文件GET到本地。需要熟练掌握。

HDFS API:同3.2.

Sqoop:同3.3.使用Sqoop完成将HDFS上的文件同步到MySQL;使用Sqoop完成将Hive表中的数据同步到MySQL。

如果你已经按照流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;

知道sqoop是HDFS和其他数据源之间的数据交换工具;

知道flume可以用作实时的日志采集。

从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapRece来分析数据,把分析结果同步到其他数据源。

接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapRece来执行。

第五章:SQL

其实大家都已经发现Hive后台使用MapRece作为执行引擎,实在是有点慢。因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。

我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:使用Spark还做了其他事情,不想引入过多的框架;Impala对内存的需求太大,没有过多资源部署。

5.1 关于Spark和SparkSQL

什么是Spark,什么是SparkSQL。

Spark有的核心概念及名词解释。

SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。

SparkSQL为什么比Hive跑的快。

5.2 如何部署和运行SparkSQL

Spark有哪些部署模式?

如何在Yarn上运行SparkSQL?

使用SparkSQL查询Hive中的表。Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

关于Spark和SparkSQL,如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

第六章:数据多次利用

请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

关于Kafka:什么是Kafka?Kafka的核心概念及名词解释。

如何部署和使用Kafka:使用单机部署Kafka,并成功运行自带的生产者和消费者例子。使用Java程序自己编写并运行生产者和消费者程序。Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

如果你已经认真完整的学习了以上的内容,那么你应该已经具备以下技能和知识点:

为什么Spark比MapRece快。

使用SparkSQL代替Hive,更快的运行SQL。

使用Kafka完成数据的一次收集,多次消费架构。

自己可以写程序完成Kafka的生产者和消费者。

从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

第七章:越来越多的分析任务

不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

7.1 Apache Oozie

Oozie是什么?有哪些功能?

Oozie可以调度哪些类型的任务(程序)?

Oozie可以支持哪些任务触发方式?

安装配置Oozie。

7.2 其他开源的任务调度系统

Azkaban,light-task-scheler,Zeus,等等。另外,我这边是之前单独开发的任务调度与监控系统,具体请参考《大数据平台任务调度与监控系统》。

第八章:我的数据要实时

在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

什么是Storm?有哪些可能的应用场景?

Storm由哪些核心组件构成,各自担任什么角色?

Storm的简单安装和部署。

自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

什么是Spark Streaming,它和Spark是什么关系?

Spark Streaming和Storm比较,各有什么优缺点?

使用Kafka + Spark Streaming,完成实时计算的Demo程序。

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:数据要对外

通常对外(业务)提供数据访问,大体上包含以下方面。


离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。

实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。

即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。

8. Hive的几种常见的数据导入方式

零.Hive的几种常见的数据导入方式
常用的的有三种:
1.从本地文件系统中导入数据到Hive表;
2.从HDFS上导入数据到Hive表;
3.在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。
Hive配置:
HDFS中Hive数据文件存放目录(启动hive后HDFS自动创建):
HDFS: /usr/hive/warehouse
hadoop fs -mkdir /usr/hive/warehouse 命令创立
本地数据存放目录:
本地:/home/santiago/data/hive
一.从本地文件系统中导入数据到Hive表
1.在hive中建表
hive> show databases;
OKdefaultTime taken: 1.706 seconds, Fetched: 1 row(s)
hive> create table guo_test(Name string,String string)
> row format delimited
> fields terminated by ','
> stored as textfile;
hive> show tables;
OK
guo_test
Time taken: 0.024 seconds, Fetched: 1 row(s)123456789101112

2.在本地文件建立同类型数据表
santi@hdp:~/data/hive$ ls
hive_test.txt
santi@hdp:~/data/hive$ cat hive_test.txt
santi,you are a zhazha.1234

3.导入数据并测试
hive>load data local inpath '/home/santi/data/hive/hive_test.txt' into table guo_test;
hive> select * from guo_test;
hive>dfs -ls /usr/hive/warehouse/guo_test;

#hadoop fs -ls /usr/hive/warehouse
Found 1 items
drwxrwxr-x - santiago supergroup 0 2017-01-14 21:13
/usr/hive/warehouse/guo_test12345678

发现hive-site,xml设置的HDFS文件存储位置中多了guo_test这个文件夹
#hadoop fs -ls /usr/hive/warehouse/guo_test
Found 1 items-rwxrwxr-x 1 santiago supergroup 24 2017-01-14 21:13
/usr/hive/warehouse/guo_test/hive_test.txt

hive> select * from guo_test;
OK
santi you are a zhazha.12345678

在该文件夹中找到了所写入hive数据仓库的文件。
[注]本地数据写入成功,但是从本地将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/santi/),然后再将数据从临时目录下移动到对应的Hive表的数据目录里面(临时目录不保留数据)。
二.从HDFS文件系统中导入数据到Hive表
1.在HDFS文件系统上建立数据文件
hdfs上没有vim命令,则需要将本地数据文件手动传入到HDFS上
/data/hive# vim data_HDtoHive/data/hive# cat data_HDtoHivedata from, HDFS to Hive #hadoop fs -put /home/santi/data/hive/data_HDtoHive /usr/data/input//数据传入# hadoop fs -ls /usr/data/input12345

2导入数据
hive> load data inpath '/usr/data/input/data_HDtoHive' into table guo_test;
hive> select * from guo_test;
OK
data from HDFS to Hive
santi you are a zhazha.
Time taken: 0.172 seconds, Fetched: 2 row(s)123456

数据写入成功
数据存hive配置的数据存储位置中。
[注]
从本地导入数据语句为
hive>load data local inpath ‘/home/santi/data/hive/hive_test.txt’ into table guo_test;
从HDFS中导入数据的语句为
hive> load data inpath ‘/usr/data/input/data_HDtoHive’ into table guo_test;
差距在local这个命令这里。
而从HDFS系统上导入到Hive表的时候,数据转移。HDFS系统上查找不到相关文件。
三.从HIVE表选取数据插入新的HIVE表
命令为create table 表名 as selecr xxx from 表名。
hive> create table hivedata_test1
> as
> select name
> from guo_test;
hive> select * from hivedata_test1;
OK
data fromsanti
Time taken: 0.116 seconds, Fetched: 2 row(s)123456789

[注]hive是分区表有稍微区别
在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比表有a和b两个分区,则对应a=xxx,b=xx对应表的目录为/user/hive/warehouse/a=xxx
user/hive/warehouse/b=xx,所有属于这个分区的数据都存放在这个目录中。
hive> create table hivedata_test2(
> Name string)
> partitioned by
> (String string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','> STORED AS TEXTFILE;

hive> insert into table hivedata_test2
> partition(String='best')
> select Name
> from guo_test;
hive> select * from hivedata_test2;
OK
data from best
santi best
Time taken: 1.549 seconds, Fetched: 2 row(s)# hadoop fs -ls /usr/hive/warehouse/hivedata_test2Found 1 items
drwxrwxr-x -santiago supergroup 0 2017-02-14 17:40
/usr/hive/warehouse/hivedata_test2/string=best

9. Hive常用命令

参数说明:
EXTERNAL:创建外部表,在建表的同时可以指定源数据的路径(LOCATION),创建内部表时,会将数据移动到数据仓库指向的路径,若创建外部表不会有任何改变。在删除表时,内部表的元数据和源数据都会被删除,外部表不会删除源数据。

COMMENT:为表和列增加注释

PARTITIONED BY:创建分区表,
——PARTITIONED BY(dt STRING, country STRING)
CLUSTERED BY:创建分桶表
SORTED BY:创建排序后分桶表(不常用)
——CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS

ROW FORMAT DELIMITED:是用来设置创建的表在加载数据的时候,支持的列分隔符。Hive默认的分隔符是\001,属于不可见字符,这个字符在vi里是^A
—— ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001';

STORED AS:指定存储文件类型 sequencefile (二进制序列文件)、textfile(文本)、rcfile(列式存储格式文件)、ORC
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。
如果数据需要压缩,使用 STORED AS SEQUENCEFILE。

LOCATION:指定表在 hdfs 上的存储位置

注意:若是外部表,则还需要删除文件(hadoop fs -rm -r -f hdfspath)

注意:INPATH后面的文件路径不能和hive表路径在hdfs上一致,最好是两个不同的文件路径,在加载过程中,源路径下的文件会被移动到hive表所在路径下,如果一致,会找不到文件错误;

Hive支持内置和自定义开发的文件格式。以下是Hive内置的一些格式:

默认是文本格式.
textfile 存储空间消耗比较大,并且压缩的text 无法分割和合并查询的效率最低,可以直接存储,加载数据的速度最高.
sequencefile 存储空间消耗最大,压缩的文件可以分割和合并查询效率高,需要通过text文件转化来加载.
rcfile 存储空间最小,查询的效率最高 ,需要通过text文件转化来加载,加载的速度最低.

相比传统的行式存储引擎,列式存储引擎具有更高的压缩比,更少的IO操作而备受青睐(注:列式存储不是万能高效的,很多场景下行式存储仍更加高效),尤其是在数据列(column)数很多,但每次操作仅针对若干列的情景,列式存储引擎的性价比更高。

10. 搭建hadoop集群,常用配置文件是什么,以及配置哪些属性

一. 简介

参考了网上许多教程,最终把hadoop在ubuntu14.04中安装配置成功。下面就把详细的安装步骤叙述一下。我所使用的环境:两台ubuntu 14.04 64位的台式机,hadoop选择2.7.1版本。(前边主要介绍单机版的配置,集群版是在单机版的基础上,主要是配置文件有所不同,后边会有详细说明)

二. 准备工作

2.1 创建用户

创建用户,并为其添加root权限,经过亲自验证下面这种方法比较好。

1 sudo adser hadoop2 sudo vim /etc/sudoers3 # 修改内容如下:4 root ALL = (ALL)ALL5 hadoop ALL = (ALL)ALL

给hadoop用户创建目录,并添加到sudo用户组中,命令如下:

1 sudo chown hadoop /home/hadoop2 # 添加到sudo用户组3 sudo adser hadoop sudo

最后注销当前用户,使用新创建的hadoop用户登陆。

2.2安装ssh服务

ubuntu中默认是没有装ssh server的(只有ssh client),所以先运行以下命令安装openssh-server。安装过程轻松加愉快~

sudo apt-get install ssh openssh-server

2.3 配置ssh无密码登陆

直接上代码:执行完下边的代码就可以直接登陆了(可以运行ssh localhost进行验证)

1 cd ~/.ssh# 如果找不到这个文件夹,先执行一下 "ssh localhost"2 ssh-keygen -t rsa3 cp id_rsa.pub authorized_keys

注意:

这里实现的是无密登陆自己,只适用与hadoop单机环境。如果配置Hadoop集群设置Master与Slave的SSH无密登陆可

三. 安装过程

3.1 下载hadoop安装包

有两种下载方式:

1. 直接去官网下载:

2. 使用wget命令下载:

3.2 配置hadoop

1. 解压下载的hadoop安装包,并修改配置文件。我的解压目录是(/home/hadoop/hadoop-2.7.1),即进入/home/hadoop/文件夹下执行下面的解压缩命令。

tar -zxvf hadoop-2.7.1.tar.gz

2. 修改配置文件:(hadoop2.7.1/etc/hadoop/)目录下,hadoop-env.sh,core-site.xml,mapred-site.xml.template,hdfs-site.xml。

(1). core-site.xml 配置:其中的hadoop.tmp.dir的路径可以根据自己的习惯进行设置。

至此,wordcount demo 运行结束。

六. 总结

配置过程遇到了很多问题,最后都一一解决,收获很多,特此把这次配置的经验分享出来,方便想要配置hadoop环境的各位朋友~

(Hadoop集群安装配置过程基本和单机版是一样的,主要是在配置文件方面有所区别,以及ssh无密登陆要求master和slave能够互相无密登陆。

阅读全文

与hdfs常用命令相关的资料

热点内容
如何确认方舟编译器 浏览:664
奶粉源箱源码什么意思 浏览:178
台州程序员兼职一般去哪些网站 浏览:388
旧版本怎么下载到新的安卓 浏览:966
flash个人网站源码下载 浏览:723
javasocketbyte 浏览:264
素描基础教程pdf 浏览:541
香港商报pdf版 浏览:427
安卓手机怎么录制吉他弹奏 浏览:382
ie文件夹缓存在哪里 浏览:265
围棋排名算法 浏览:963
zigbee加密算法 浏览:464
柏杨版资治通鉴pdf 浏览:395
事业编程序员下班时间 浏览:10
linux中命令大全 浏览:39
pic单片机学习网站 浏览:164
843除6的算法 浏览:377
arduino编程视频 浏览:746
pdf背景绿色 浏览:613
记事本dos命令 浏览:276