导航:首页 > 程序命令 > matlab凸包命令

matlab凸包命令

发布时间:2022-11-16 08:40:47

1. 跪求matlab 凸包算法 算多边形面积

Matlab算法
x和y代表你画的散点的横纵坐标向量,当然肯定是等长度的。
plot(x,y, '*', 'markersize',10);
dt = DelaunayTri(x,y);
k = convexHull(dt);
plot(x,y, '.', 'markersize',10);
hold on;
plot(x(k), y(k), 'r');
Perimeter = sqrt(diff(x(k))*diff(x(k))'+ diff(y(k))*diff(y(k))'); % 周长
area=abs(trapz(x(k),y(k)))%面积
就是先把散点的区域用凸多边形画出来,然后再求多边形的面积和周长。

2. 已知点集的matlab 三维凸包 用公式表达出来

用 qhull 计算三维点集的凸包
在计算几何领域,qhull 是个很强大的程序,它可以计算 2 维、3 维,以及4 维以上维度点集的凸包、Delaunay 网格、Voronoi 图,并且 Matlab 和 Octave 都基于它来提供计算几何功能,Mathematica 使用它实现 Delaunay 网格构造。不过,也正是因为它过于强大,所以我在它的源代码中逡巡了好久,也没有看懂。现在我能做到的,就是找个梯子先爬上这个黑箱子。

因为 qhull 是一个复杂的命令行工具箱,用户可以通过各种命令选项去调用适当的程序。比如,要对点集进行 Delaunay 网格化,可以直接使用 "qdelaunay" 命令来实现,也可以通过 "qhull d Qbb" 命令来实现。
在 qhull 工具箱中,要构建点集的凸包,可以调用 "qconvex" 命令来实现,而且 "qhull" 如果在未设定命令选项时,默认调用的程序就是 qconvex。对于我要解决的问题,即使用 qhull 构造三维点集的凸包而言,基本命令格式如下:
$ qconvex [选项] < input_file > output_file
qconvex 程序的行为由一组功能选项来控制,常用的如下:
Qt - 三角化输出,也就是输出由三角面片组合而成的凸包数据
QJ - 对于近似于平面的数据进行一些简化,譬如对于三维点集,
- 可以保证不会出现 4 点共面的情况
Tv - 从结构、凸性以及数据包含等方面对凸包构建结果进行校验
- - 输出 qconvex 所有选项信息
对于凸包构建结果的输出,qconvex 提供了一组输出控制选项,常用的如下:
s - 输出凸包构建结果概要 (default)
i - 输出凸包上每个面片的顶点
n - 输出凸包上每个面的方程系数
p - 输出要进行凸包求解的点集的坐标
Fx - 输出极点(凸包顶点)
FA - 输出凸包的面积和体积
o - 采用 OFF 格式输出凸包构建结果(维度, 顶点数, 面数, 边数)
G - 采用 Geomview 格式输出凸包构建结果(只支持 2 维至 4 维)
m - 采用 Mathematica 格式输出凸包构建结果(只支持 2 维与 3 维)
TO 文件名 - 将凸包构建结果输出到文件
我们来玩真格的。首先准备好一份存放三维数据点信息的文本文件,文件的第一行是点数,其余每行都是一个数据点的 x, y, z 坐标信息。对于下图所示的 venus 点云,其数据文件 venus.asc 格式为:

26218
3.554705 199.173300 8.394049
3.584999 199.553600 10.168500
3.648500 200.610500 9.662390
3.667395 198.429900 10.576820
3.740701 198.771200 12.616080
3.796498 200.566700 7.518420
3.798301 197.899800 9.092709
3.814104 197.907700 12.370720
3.839600 200.038700 12.814610
... ... ... ... ... ...
现在使用 qconvex 对 venus.asc 文件所包含的点集构建凸包,采用 OFF (Object File Format) 格式输出:
$ qconvex o < venus.asc TO result.off
qconvex 输出的 off 格式文件自上而下由三部分构成:
文件头信息,即文件的第一行是数据的维度,第二行的内容是凸包顶点数、面片数和边数;
点表,存放凸包顶点的坐标信息;
面表,按逆时针次序记录面片顶点在点表中的序号(从 0 开始)。
在 off 文件的面表区域,第一列数字用来表示每个面片所含的顶点的个数。
linux 下,可以使用 geomview 来显示 OFF 格式文件,但前提是将 qconvex 输出的 off 文件的第一行内容替换为 "OFF"。下面是一份 geomview 所能接受的 OFF 文件格式,显示结果如下图所示。

# 文件头 (本行文本是注释,实际中应当去掉)
OFF
26218 4870 7305
# 点表 (本行文本是注释,实际中应当去掉)
3.584999 199.5536 10.1685
3.740701 198.7712 12.61608
3.796498 200.5667 7.51842
... ... ... ... ... ...
# 面表 (本行文本是注释,实际中应当去掉)
3 9864 9563 9674
3 9563 9864 9833
3 6318 1422 452

3. MATLAB 如何找到 一组给定的离散的点 的 外围凸多边形,并且输出此多边形顶点坐标

先用DelaunayTri得到三角剖分,然后使用convexhull得到凸包。例子:

x=rand(100,1)
y=rand(100,1)
dt=DelaunayTri(x,y);
k=convexHull(dt);
plot(x,y,'.','markersize',10);holdon;
plot(x(k),y(k),'r');holdoff;

4. MATLAB 一堆散点如何求包络线

你可以用convexHull来找出凸包。

%%x,y弄成列向量

dt=DelaunayTri(x,y)
k=convexHull(dt)
plot(x,y,'.','markersize',10);holdon;
plot(x(k),y(k),'r');holdoff;

5. matlab 里面如何用红色十字标记凸包节点

如果没记错你可以是这么写试试:plot(x(s),y(s),'r+')

6. matlab 常用命令有哪些

matlab命令
一、常用对象操作:除了一般windows窗口的常用功能键外。
1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。
2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。
3、功能键:
功能键 快捷键 说明
方向上键 Ctrl+P 返回前一行输入
方向下键 Ctrl+N 返回下一行输入
方向左键 Ctrl+B 光标向后移一个字符
方向右键 Ctrl+F 光标向前移一个字符
Ctrl+方向右键 Ctrl+R 光标向右移一个字符
Ctrl+方向左键 Ctrl+L 光标向左移一个字符
home Ctrl+A 光标移到行首
End Ctrl+E 光标移到行尾
Esc Ctrl+U 清除一行
Del Ctrl+D 清除光标所在的字符
Backspace Ctrl+H 删除光标前一个字符
Ctrl+K 删除到行尾
Ctrl+C 中断正在执行的命令
4、clc可以命令窗口显示的内容,但并不清除工作空间。
二、函数及运算
1、运算符:
+:加, -:减, *:乘, /: 除, \:左除 ^: 幂,‘:复数的共轭转置, ():制定运算顺序。
2、常用函数表:
sin( ) 正弦(变量为弧度)
Cot( ) 余切(变量为弧度)
sind( ) 正弦(变量为度数)
Cotd( ) 余切(变量为度数)
asin( ) 反正弦(返回弧度)
acot( ) 反余切(返回弧度)
Asind( ) 反正弦(返回度数)
acotd( ) 反余切(返回度数)
cos( ) 余弦(变量为弧度)
exp( ) 指数
cosd( ) 余弦(变量为度数)
log( ) 对数
acos( ) 余正弦(返回弧度)
log10( ) 以10为底对数
acosd( ) 余正弦(返回度数)
sqrt( ) 开方
tan( ) 正切(变量为弧度)
realsqrt( ) 返回非负根
tand( ) 正切(变量为度数)
abs( ) 取绝对值
atan( ) 反正切(返回弧度)
angle( ) 返回复数的相位角
atand( ) 反正切(返回度数)
mod(x,y) 返回x/y的余数
sum( ) 向量元素求和
3、其余函数可以用help elfun和help specfun命令获得。
4、常用常数的值:
pi 3.1415926…….
realmin 最小浮点数,2^-1022
i 虚数单位
realmax 最大浮点数,(2-eps)2^1022
j 虚数单位
Inf 无限值
eps 浮点相对经度=2^-52
NaN 空值
三、数组和矩阵:
1、构造数组的方法:增量发和linspace(first,last,num)first和last为起始和终止数,num为需要的数组元素个数。
2、构造矩阵的方法:可以直接用[ ]来输入数组,也可以用以下提供的函数来生成矩阵。
ones( ) 创建一个所有元素都为1的矩阵,其中可以制定维数,1,2….个变量
zeros() 创建一个所有元素都为0的矩阵
eye() 创建对角元素为1,其他元素为0的矩阵
diag() 根据向量创建对角矩阵,即以向量的元素为对角元素
magic() 创建魔方矩阵
rand() 创建随机矩阵,服从均匀分布
randn() 创建随机矩阵,服从正态分布
randperm() 创建随机行向量
horcat C=[A,B],水平聚合矩阵,还可以用cat(1,A,B)
vercat C=[A;B],垂直聚合矩阵, 还可以用cat(2,A,B)
repmat(M,v,h) 将矩阵M在垂直方向上聚合v次,在水平方向上聚合h次
blkdiag(A,B) 以A,和B为块创建块对角矩阵
length 返回矩阵最长维的的长度
ndims 返回维数
numel 返回矩阵元素个数
size 返回每一维的长度,[rows,cols]=size(A)
reshape 重塑矩阵,reshape(A,2,6),将A变为2×6的矩阵,按列排列。
rot90 旋转矩阵90度,逆时针方向
fliplr 沿垂轴翻转矩阵
flipud 沿水平轴翻转矩阵
transpose 沿主对角线翻转矩阵
ctranspose 转置矩阵,也可用A’或A.’,这仅当矩阵为复数矩阵时才有区别
inv 矩阵的逆
det 矩阵的行列式值
trace 矩阵对角元素的和
norm 矩阵或矢量的范数,norm(a,1),norm(a,Inf)…….
normest 估计矩阵的最大范数矢量
chol 矩阵的cholesky分解
cholinc 不完全cholesky分解
lu LU分解
luinc 不完全LU分解
qr 正交分解
kron(A,B) A为m×n,B为p×q,则生成mp×nq的矩阵,A的每一个元素都会乘上B,并占据p×q大小的空间
rank 求出矩阵的刺
pinv 求伪逆矩阵
A^p 对A进行操作
A.^P 对A中的每一个元素进行操作
四、数值计算
1、线性方程组求解
(1)AX=B的解可以用X=A\B求。XA=B的解可以用X= A/B求。如果A是m×n的矩阵,当m=n时可以找到唯一解,m<n,不定解,解中至多有m个非零元素。如果m>n,超定系统,至少找到一组解。如果A是奇异的,且AX=B有解,可以用X=pinv(A)×B返回最小二乘解
(2)AX=b, A=L×U,[L,U]=lu(A), X=U\(L\b),即用LU分解求解。
(3)QR(正交)分解是将一矩阵表示为一正交矩阵和一上三角矩阵之积,A=Q×R[Q,R]=chol(A), X=Q\(U\b)
(4)cholesky分解类似。
2、特征值
D=eig(A)返回A的所有特征值组成的矩阵。[V,D]=eig(A),还返回特征向量矩阵。
3、A=U×S×UT,[U,S]=schur(A).其中S的对角线元素为A的特征值。
4、多项式Matlab里面的多项式是以向量来表示的,其具体操作函数如下:
conv 多项式的乘法
deconv 多项式的除法,【a,b】=deconv(s),返回商和余数
poly 求多项式的系数(由已知根求多项式的系数)
polyeig 求多项式的特征值
Polyfit(x,y,n) 多项式的曲线拟合,x,y为被拟合的向量,n为拟合多项式阶数。
polyder 求多项式的一阶导数,polyder(a,b)返回ab的导数
[a,b]=polyder(a,b)返回a/b的导数。
polyint 多项式的积分
polyval 求多项式的值
polyvalm 以矩阵为变量求多项式的值
resie 部分分式展开式
roots 求多项式的根(返回所有根组成的向量)
注:用ploy(A)求出矩阵的特征多项式,然后再求其根,即为矩阵的特征值。
5、插值常用的插值函数如下:
griddata 数据网格化合曲面拟合
Griddata3 三维数据网格化合超曲面拟合
interp1 一维插值(yi=interp1(x,y,xi,’method’)Method=nearest/linear/spline/pchip/cubic
Interp2 二维插值zi=interp1(x,y,z,xi,yi’method’),bilinear
Interp3 三维插值
interpft 用快速傅立叶变换进行一维插值,help fft。
mkpp 使用分段多项式
spline 三次样条插值
pchip 分段hermit插值
6、函数最值的求解
fminbnd(‘f’,x1,x2,optiset(,))求f在 x1和x2之间的最小值。Optiset选项可以有‘Display’+‘iter’/’off’/’final’,分别表示显示计算过程/不显示/只显示最后结果。fminsearch求多元函数的最小值。fzero(‘f’,x1)求一元函数的零点。X1为起始点。同样可以用上面的选项。
五、图像绘制:
1、基本绘图函数
plot 绘制二维线性图形和两个坐标轴
plot3 绘制三维线性图形和两个坐标轴
fplot 在制定区间绘制某函数的图像。fplot(‘f’,区域,线型,颜色)
loglog 绘制对数图形及两个坐标轴(两个坐标都为对数坐标)semilogx 绘制半对数坐标图形
semilogy 绘制半对数坐标图形
2、线型: 颜色 线型
y 黄色 . 圆点线 v 向下箭头
g 绿色 -. 组合 > 向右箭头
b 蓝色 + 点为加号形 < 向左箭头
m 红紫色 o 空心圆形 p 五角星形
c 蓝紫色 * 星号 h 六角星形
w 白色 . 实心小点 hold on 添加图形
r 红色 x 叉号形状 grid on 添加网格
k 黑色 s 方形 - 实线
d 菱形 -- 虚线 ^ 向上箭头
3、可以用subplot(3,3,1)表示将绘图区域分为三行三列,目前使用第一区域。此时如要画不同的图形在一个窗口里,需要hold on。

7. matlab如何求大量数据中分布最多的范围及中心点。

楼主是不是想求出一个最小半径的圆,圆内包含所有的点?这个问题很有趣。

寻找这个圆的时候注意一下几点:
1.这个圆必然穿过图中某些靠外围的点,这样才是最小半径的圆。
2.几何中我们知道,三个点可以确定一个圆, 我们就是需要找出这三个点来.

算法如下:1.先求这些点对应的凸包,已经有现成的算法。
2.生成凸包后,在看凸包上哪三点确定的圆可以包含凸包。

当然如果楼主讨论的不是以上所述,而是模式分类的话,建议看看数据分类方法。可以搜索关键字:Gaussian mixtrual model, expectation-maximization algorithm 和 k-mean algorithm 学习下相关的知识。

8. matlab中convhull函数怎么用

matlab中的convhull()函数是凸包函数,用于计算给定区域的面积或体积。convhull使用格式:

一、凸包面积

k = convhull(x,y) %计算凸包的面积

例如:

P = [0 0; 1 1; 1.5 0.5; 1.5 -0.5; 1.25 0.3; 1 0; 1.25 -0.3; 1 -1];

[k,av] = convhull(P); %av=1.75

plot(P(:,1),P(:,2),'*') %绘制原始点及凸包。

hold on

plot(P(k,1),P(k,2))

二、凸包体积

k = convhull(x,y,z) %计算凸包的体积

例如:

[x,y,z] = meshgrid(-2:1:2,-2:1:2,-2:1:2);

x = x(:);y = y(:);z = z(:);

[k,av] = convhull(x,y,z);av %av=64

trisurf(k,x,y,z,'FaceColor','cyan'),axis equal

阅读全文

与matlab凸包命令相关的资料

热点内容
五菱宏光空调压缩机 浏览:64
为什么app占用几百兆 浏览:676
自动解压失败叫我联系客服 浏览:482
易语言新手源码 浏览:456
oa服务器必须有固定ip地址 浏览:42
传奇源码分析是什么 浏览:267
解放压缩机支架 浏览:255
程序员秃顶搞笑相遇 浏览:6
IBM手机app商店叫什么名字 浏览:834
jpeg压缩质量 浏览:774
云服务器评测对比 浏览:145
java日期转string 浏览:221
openfire源码编译 浏览:897
在线小工具箱引流网站源码 浏览:337
非科班程序员自学 浏览:801
压缩泡沫鞋底底材 浏览:219
程序员职场第一课2正确的沟通 浏览:679
遇到不合法app应该怎么办 浏览:91
汇编程序编译后的文件 浏览:81
大智慧均线源码 浏览:374