⑴ STATA中如何做面板数据条件回归
两个变量为啥要联立方程。。。。
用STATA处理面板数据,首先要声明数据是面板数据,命令是xtreg x1 x2
变量x1就是观测值的单位,就是一般模型里的i,变量x2是观测值的时间,就是一般模型里的t。
比如有1980-1985年5年省级面板数据,province变量表示省,year变量表示年,就应该:xtreg province year
记住把i放在t前面就是了。
然后怎么处理这些数据就看你具体用什么模型了,有xtreg, xtgls, xtivreg等等。
⑵ stata如何将初始数据处理成面板数据格式
首先我要说下面板数据是什么,面板数据是指同一批观察对象,在不同时间段的多次观察的数据,和截面数据不一样的就是多了一个时间周期的概念;我用两个方法来回答下这个问题吧;
方法一
如果你的你的面板数据是10个地区10年的数据,地区的变量名是region,年份的变量名是year。
直接在stata里面输入:
tsset region year
然后stata就会把你的数据识别为面板数据啦!
方法二
1.先做一个Excel表格,然后将excel导入到stata中。
2.以地区面板数据为例,横着为:各地区的名称;纵着为:各年份解释变量值(解释变量名称无需写在表格中,可以记为分表格名称),将所有解释变量分别制成分表格即可。
⑶ 求教STATA中面板数据单位根检验的做法
面板数据的单位根检验方法有很多种,一般我们只选两种,即相同根单位根检验和不同根单位根检验。
如果数据是平衡的,则可使用LLC检验(适用于同根)和IPS检验(适用于不同根)。
一般的stata并没有自带这两个程序需要自己下载安装,我们可以在命令栏键入:search levinlin, net和search ipshin, net,然后按照提示逐步安装。接着就可以进行变量的单位根检验。输入如下命令:Levinlin 变量名,lags(1)Ipshin 变量名,lags(1)
例:
1、levinlin lntfp,lags(1)
出现以下结果:
Levin-Lin-Chu test for lntfp Deterministics chosen: constant
Pooled ADF test, N,T = (31,9) Obs = 217
Augmented by 1 lags (average) Truncation: 6 lags
coefficient t-value t-star P > t
-1.18963 -15.196 -6.06106 0.0000
LLC检验的原假设是H0: 有单位根,P值为0,拒绝原假设,所以不存在单位根。
2、ipshin lntfp,lags(1)
出现以下结果:
Im-Pesaran-Shin test for cross-sectionally demeaned lntfp
Deterministics chosen: constant
t-bar test, N,T = (31,9) Obs = 217
Augmented by 1 lags (average)
t-bar cv10 cv5 cv1 W[t-bar] P-value
-2.348 -1.700 -1.750 -1.850 -4.272 0.000
同样说明没有单位根。
如果存在单位根,则需要进行一阶差分,并再次进行单位根检验,输入以下命令:
levinlin D.变量名,lags(1)
Stata的作图模块,主要提供如下八种基本图形的制作 : 直方图(histogram),条形图(bar),百分条图 (oneway),百分圆图(pie),散点图(two way),散点图矩阵(matrix),星形图(star),分位数图。
这些图形的巧妙应用,可以满足绝大多数用户的统计作图要求。在有些非绘图命令中,也提供了专门绘制某种图形的功能,如在生存分析中,提供了绘制生存曲线图,回归分析中提供了残差图等。
Stata是一个统计分析软件,但它也具有很强的程序语言功能,这给用户提供了一个广阔的开发应用的天地,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。
事实上,Stata的ado文件(高级统计部分)都是用Stata自己的语言编写的。
Stata其统计分析能力远远超过了SPSS,在许多方面也超过了SAS!由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据。
因此计算速度极快(一般来说, SAS的运算速度要比SPSS至少快一个数量级,而Stata的某些模块和执行同样功能的SAS模块比,其速度又比SAS快将近一个数量级!)Stata也是采用命令行方式来操作,但使用上远比SAS简单。
其生存数据分析、纵向数据(重复测量数据)分析等模块的功能甚至超过了SAS。用Stata绘制的统计图形相当精美,很有特色。
(3)stata面板数据命令扩展阅读:
面板数据维度的确定
在面板数据进行模型估计前,要进行面板数据的维度确定。由于面板数据既有截面数据又有时间序列,而stata不能自动识别,因此,必须使得stata得知哪一部分是截面数据,而哪一部分是时间序列。
设置面板数据维度的基本命令为:
xtset panelvar timvar [, tsoptions]
其中panelvar代表截面数据变量,timvar代表时间序列变量。
选取某一面板数据进行维度设定(该数据研究职业培训津贴对厂商废弃率的影响):
xtset fcode year
⑷ stata面板数据模型
方法/步骤 短面板处理 面板数据是指既有截面数据又有时间序列的数据,因此其存在截面数据没有的优势,在用stata进行面板数据的估计时,一般选择xtreg命令进行拟合。本节主要论述短面板的stata实现,即时间维度T相对于截面数n较小的数据。在那种情况下,由于T较小,每个个体的信息较少,故无从讨论扰动项是否存在自相关,我们一般假设其独立同分布。 面板数据维度的确定 在面板数据进行模型估计前,要进行面板数据的维度确定。由于面板数据既有截面数据又有时间序列,而stata不能自动识别,因此,必须使得stata得知哪一部分是截面数据,而哪一部分是时间序列。 设置面板数据维度的基本命令为: xtset panelvar timvar [, tsoptions] 其中panelvar代表截面数据变量,timvar代表时间序列变量。 选取某一面板数据进行维度设定(该数据研究职业培训津贴对厂商废弃率的影响): xtset fcode year 固定效应估计 xtreg可以估计固定效应与随机效应,两者的差异在于选项的不同。 xtreg用来做固定效应的语法是: xtreg depvar [indepvars] [if] [in] [weight] , fe [FE_options] 其语法可以help xtreg获得。(说明,其中xt表示面板数据的命令,因此,在stata中输入help xt可以学习面板数据描述、估计等命令。) 选取某一数据进行拟合: xtreg lscrap d88 d89 grant grant_1,fe 结果显示如下: 其中,(1)表示组内、组间、总体的R方,其中固定效应看组内R-sq,随机效应看总体R-sq。 (2)表示个体效应与解释变量的相关系数。 (3)F检验表示模型整体显着性。 (4)U表示个体观测效应,sigma_u为个体效应的标准差 E表示随机干扰项,u+e为所谓的混合误差,rho是指个体效应的方差占混合误差方差的比重。 备注:(1)(2)(3)(4)分别对应一下的四张照片 随机效应估计 xtreg用来做随机效应的语法是: xtreg depvar [indepvars] [if][in] [weight] , re [RE_options] 与上一部分类似的估计 xtreg lscrap d88 d89 grantgrant_1,re (1) 与固定效应不同的是,固定效应F检验处,此处为瓦尔德卡方检验,同样表示模型整体显着性。 固定效应与随机效应的选择:豪斯曼检验 首先,看两个效应的区别 固定效应与随机效应的区别 区别一: FE / RE 模型可统一表述为: y_it = u_i + x_it*b + e_it 对于FE,个体效应 u_i 被视为一组解释变量,为非随机变量,即 N-1 个虚拟变量;对于RE,个体效应 u_i被视为干扰项的一部分,因此是随机变量,假设其服从正态分布,即 u_i~N(0, sigma_u^2); 在上述两个模型的设定中,e_it都被视为“干干净净的”干扰项,也就是OLS时那个背负着众多假设条件,但长相极为俊俏的干扰项,e_it~N(0,sigma_e^2)。 需要注意的是,在 FE 模型中,只有一个干扰项 e_it,它可以随公司和时间而改变,所有个体差异都采用 u_i 来捕捉。而在 RE 模型中,其实有两个干扰项:u_i 和 e_it,差别在于,第一种干扰项不随时间改变(这也是所谓的“个体效应”的含义),而第二类干扰项可以随时间改变。 因为上述对 FE 和 RE 中个体效应 u_i 的假设之差异,二者的估计方法亦有差异。FE可直接采用OLS估计,而RE则必须使用GLS才能获得更为有效的估计量。 固定效应模型中的个体差异反映在每个个体都有一个特定的截距项上;随机效应模型则假设所有的个体具有相同的截距项,个体的差异主要反应在随机干扰项的设定上 。 区别二: 固定效应更适合研究样本之间的区别,而随机效应适合由样本来推断总体特征。 其次,Hausman检验确定模型形式的选择。 以上面的面板数据为例 xtreg lscrap d88 d89 grant grant_1,fe est store fe xtreg lscrap d88 d89 grant grant_1,re est store re hausman fe 结果显示: (1) 原假设为随机效应,而最终P值为0.7096,接受原假设,模型最终选择为随机效应。
⑸ 如何在stata输入面板数据
步1:数据作如下排列(excel):
province year gdp fdi
步2:全选后,打开stata中的data editor窗口,粘贴;
步3:在命令框中输入
tis year
iis province
就可以了
下来就可以用xtreg方法了
⑹ 如何在stata中处理面板数据
短面板处理
面板数据是指既有截面数据又有时间序列的数据,因此其存在截面数据没有的优势,在用stata进行面板数据的估计时,一般选择xtreg命令进行拟合。本节主要论述短面板的stata实现,即时间维度T相对于截面数n较小的数据。在那种情况下,由于T较小,每个个体的信息较少,故无从讨论扰动项是否存在自相关,我们一般假设其独立同分布。
面板数据维度的确定
在面板数据进行模型估计前,要进行面板数据的维度确定。由于面板数据既有截面数据又有时间序列,而stata不能自动识别,因此,必须使得stata得知哪一部分是截面数据,而哪一部分是时间序列。
设置面板数据维度的基本命令为:
xtset panelvar timvar [, tsoptions]
其中panelvar代表截面数据变量,timvar代表时间序列变量。
选取某一面板数据进行维度设定:
xtset fcode year
⑺ stata里面什么命令可以对面板数据按时间求均值
首先对面板数据进行声明:
前面是截面单元,后面是时间标识:
tsset company year
tsset instry year
产生新的变量:gennewvar=human*lnrd
产生滞后变量Genfiscal(2)=L2.fiscal
产生差分变量Genfiscal(D)=D.fiscal
一、描述性统计
xtdes :对Panel Data截面个数、时间跨度的整体描述
Xtsum:分组内、组间和样本整体计算各个变量的基本统计量
xttab 采用列表的方式显示某个变量的分布
二、主要命令和方法
Stata中用于估计面板模型的主要命令:xtreg
xtreg depvar [varlist] [if exp] , model_type [level(#) ]
Model type 模型
be Between-effects estimator
fe Fixed-effects estimator
re GLSRandom-effects estimator
pa GEEpopulation-averaged estimator
mle Maximum-likelihood Random-effectsestimator
主要估计方法:
xtreg: Fixed-, between- and random-effects, and population-averaged linear models
xtregar:Fixed- andrandom-effects linear models with an AR(1) disturbance
xtpcse :OLS orPrais-Winsten models with panel-corrected standard errors
xtrchh :Hildreth-Houckrandom coefficients models
xtivreg :Instrumentalvariables and two-stage least squares for panel-data models
xtabond:Arellano-Bond linear, dynamic panel data estimator
xttobit :Random-effectstobit models
xtlogit :Fixed-effects,random-effects, population-averaged logit models
xtprobit :Random-effects andpopulation-averaged probit models
xtfrontier :Stochastic frontiermodels for panel-data
xtrc gdp invest culture e sci health social admin,beta
三、xtreg命令的应用
声明面板数据类型:
*1、面板声明
use FDI.dtar, clear
xtset id year
1.固定效应模型估计:
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe
2.随机效应模型估计:
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re
3. 最大似然估计Ml:
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,mle
Hausman检验究竟选择固定效应模型还是随机效应模型:
第一步:估计固定效应模型,存储结果
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe
est store fe
第二步:估计随机效应模型,存储结果
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re
est store re
第三步:进行hausman检验
hausman fe re
对于固定效应模型的异方差检验和序列相关检验:
xtserial xtreg lngdp lnfdi lnie lnex lnim lnci lngp
异方差检验:
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe
xttest3 (Modified Wald statistic for groupwise heteroskedasticity in fixedeffect model)
随机效应模型的序列相关检验:
xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re
xttest1
xttest1用于检验随机效应(单尾和双尾) 、一阶序列相关以及两者的联合显着
检验结果表明存在随机效应和序列相关,而且对随机效应和序列相关的联合检验也非常显着
可以使用广义线性模型xtgls对异方差和序列相关进行修正:
xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(hetero),修正异方差
xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(correlated),修正依横截面而变化的异方差
xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(hetero) corr(ar1),修正异方差和一阶序列相关ar(1)