1. AI(人工智能)的英文全称AI指什么,包含什么
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
一、人工智能的历史
人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。这可是不是一个容易的事情。 如果希望做出一台能够思考的机器,那就必须知识什么是思考,更进一步讲就是什么是智慧,它的表现是什么,你可以说科学
家有智慧,可你决不会说一个路人什么也不会,没有知识,你同样不敢说一个孩子没有智慧,可对于机器你就不敢说它有智慧了吧,那么智慧是如何分辨的呢?我们说的话,我们做的事情,我们的想法如同泉水一样从大脑中流出,如此自然,可是机器能够吗,那么什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。
在定义智慧时,英国科学家图灵做出了贡献,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的,图灵实验的本质 就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。不要以为图灵只做出这一点贡献就会名垂表史,如果你是学计算机的就会知道,对于计算机人士而言,获得图灵奖就等于物理学家获得诺贝尔奖一样,图灵在理论上奠定了计算机产生的基础,没有他的杰出贡献世界上根本不可能有这个东西,更不用说什么网络了。
科学家早在计算机出现之前就已经希望能够制造出可能模拟人类思维的机器了,在这方面我希望提到另外一个杰出的数学家,哲学家布尔,通过对人类思维进行数学化精确地刻画,他和其它杰出的科学家一起奠定了智慧机器的思维结构与方法,今天我们的计算机内使用的逻辑基础正是他所创立的。
我想任何学过计算机的人对布尔一定不会陌生,我们所学的布尔代数,就是由它开创的。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具了,在以后的岁月中,无数科学家为这个目标努力着,现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了,刚刚结束的国际象棋大赛中,计算机把人给胜了,这是人们都知道的,大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
现在人类已经把计算机的计算能力提高到了前所未有的地步,而人工智能也在下世纪领导计算机发展的潮头,现在人工智能的发展因为受到理论上的限制不是很明显,但它必将象今天的网络一样深远地影响我们的生活。
在世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现要从计算机的诞生开始算起,这时人类才有可能以机器的实现人类的智能。AI这个英文单词最早是在1956年的一次会议上提出的,在此以后,因此一些科学的努力它得以发展。人工智能的进展并不象我们期待的那样迅速,因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。
让我们顺着人工智能的发展来回顾一下计算机的发展,在1941年由美国和德国两国共同研制的第一台计算机诞生了,从此以后人类存储和处理信息的方法开始发生革命性的变化。第一台计算机的体型可不算太好,它比较胖,还比较娇气,需要工作在有空调的房间里,如果希望它处理什么事情,需要大家把线路重新接一次,这可不是一件省力气的活儿,把成千上万的线重新焊一下我想现在的程序员已经是生活在天堂中了。
终于在1949发明了可以存储程序的计算机,这样,编程程序总算可以不用焊了,好多了。因为编程变得十分简单,计算机理论的发展终于导致了人工智能理论的产生。人们总算可以找到一个存储信息和自动处理信息的方法了。
虽然现在看来这种新机器已经可以实现部分人类的智力,但是直到50年代人们才把人类智力和这种新机器联系起来。我们注意到旁边这位大肚子的老先生了,他在反馈理论上的研究最终让他提出了一个论断,所有
人类智力的结果都是一种反馈的结果,通过不断地将结果反馈给机体而产生的动作,进而产生了智能。我们家的抽水马桶就是一个十分好的例子,水之所以不会常流不断,正是因为有一个装置在检测水位的变化,如果水太多了,就把水管给关了,这就实现了反馈,是一种负反馈。如果连我们厕所里的装置都可以实现反馈了,那我们应该可以用一种机器实现反馈,进而实现人类智力的机器形式重现。这种想法对于人工智能早期的有着重大的影响。
在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们现在所采用的方法思想方法有许多还是来自于这个50年代的程序。
1956年,作为人工智能领域另一位着名科学家的麦卡希(就是右图的那个人)召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,工人智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到现在许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。
在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,如统计分析数据,参与医疗诊断等等,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的,但我想对科学真理的无尽追求才是最终的动力吧。
二、人工智能的应用领域
1、问题求解。
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
2、逻辑推理与定理证明。
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3、自然语言处理。
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
4、智能信息检索技术。
受"()*+ (*) 技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。
5、专家系统。
专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“ 专家系统”或“ 知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。
三、人工智能理论的数学化趋势越来越突出
在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在〔!,"〕上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(")与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。
五、人工智能的发展现状及前景
目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,SOAr 在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。
80 年代,以Newell A 为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar 已经显示出强大的问题求解能力。在Soar中已实现了30 多种搜索方法,实现了若干知识密集型任务(专家系统) ,如RI 等。rOOks 提出了人工智能的一种新的途径。它认为无需概念或者说无需符号表示,智能系统的能力可以逐步进化。在它的研究中突出4 个概念:(1) 所处的境遇 机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2) 具体化 机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后立即会有反馈。(3) 智能 智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4) 浮现 从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。
五、结语
人工智能不单单需要逻辑思维与模仿,科学家们对人类大脑和神经系统研究得越多,他们越加肯定:情感是智能的一部分,而不是与智能相分离的。因此人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且还要赋予它情感能力。许多科学家断言,机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到下世纪中叶,人类生命的本质也会发生变化。神经植入将增强人类的知识和思考能力,并且开始向一种复合的人/机关系过渡,这种复合关系将使人类逐渐停止对生物机体的需求。大量非常微小的机器人将在大脑的感觉区里占据一席之地,并且创造出真假难辨的虚拟现实的仿真效果。
人工智能的实现,不是天方夜谭。虽然会很辛苦,但是没有人规定只有人类可以思考。就像是生命的不同表现形式,动物,植物,微生物,是不同的生命的形式。人类可以以未知的方式思考,计算机也可以以另一种(并非一定要和人相同的)形式思考。
着名软件公司ADOBE的专业制图软件Illustrator 的一种文件格式!
AI ( Artificial Intelligence ):人工智能。就是指计算机模仿真实世界的行为方式与人类思维与游戏的方式的运算能力。那是一整套极为复杂的运算系统与运算规则。
=============================================================
此外,AI还代表ALLEN IVERSON(阿伦·艾佛森),他生于美国,是全世界最好的篮球联盟——“NBA”96黄金一代的代表人物,是NBA有史以来最好的后卫之一,他以183cm身高在众多魁梧的球员中灵动跳跃,独领风骚。他先后摘取过NBA得分王、抢断王等称号,还在2001年带领76人队闯进NBA总决赛。他以特立独行的风格和满身的纹身成为全球篮球青少年疯狂追捧的偶像。
————————————————————————————————————
歌手姓名: AI 英文名: AI
唱片公司: 环球唱片(Universal Music)
国 籍: 日本 语 言: 日语
兴 趣:
个人经历: *东瀛首席嘻哈女力、R&B歌姬 她是张力十足的嘻哈女力,也是柔情似水的R&B美声歌姬,AI,22岁的她在时尚一派与安室奈美惠合唱‘Uh、Uh…’,并在珍娜杰克森的音乐录影带中展现绝赞舞技,除了过人的歌舞才华之外,词曲创作力更是傲视东瀛R&B舞台,在嘻哈音乐大厂Def Jam Japan签下一纸合约之后,发行‘ORIGINAL A.I./原创A.I.’专辑立刻赢得媒体一致肯定,除了拿下SPACE SHOWER TV的R& B音乐录影带大奖外,更代表日本参加2004年MTV BUZZ ASIA演唱会,一举打进亚洲市场。
以过人演唱的天赋而获得日本“新时代音乐代言人”殊荣的HIP HOP小天后AI,近日参加了在台北举行的“台北流行音乐节”,同行的日本歌手还有一青窈以及藤木直人。在这场盛大的音乐节上,AI以她新颖而独特的演唱方式以及活力四射的表演令在场6万歌迷为之倾倒。 AI有着四分之一的意大利血统,骨子里就透出一种浪漫和前卫的气息。而她又是在美国长大,接触的音乐也很多元化。由于AI的母亲非常喜欢音乐,所以从小她就深受各种类型音乐的熏陶。在15岁时,AI还曾经参加过珍妮·杰克逊的MTV《GO DEEP》的录制。不过,在日本出道时却并不顺利,因为与工作人员在音乐理解上的不同,当大家对自己的音乐反映很冷淡时,她就很想去敲墙壁,可见其可爱之处。不过,AI并没有被现实所击败,仍然坚持走HIP HOP这条音乐路线,使得她的音乐风格也带给人们一种全新的感受。在今年日本最权威的公信榜票选中,AI从众多新晋女性中脱颖而出,成为新一代音乐天后接班人。对此,AI自己也非常满意,她表示自己想要成为一个很有朝气的歌手,给更多的人带来幸福感。这次的台北流行音乐节,AI也是做足了准备。除了带上偕同一起演出的DJ、化妆师、造型师、人声乐手AFURA以外,连日本报知新闻、电通、朝日电视台等日本媒体的高层人士以及自己经济公司的社长也都一同前来,浩浩荡荡23人的访华队伍令AI颇有面子。而赴台之前,AI也时常向安室奈美惠等曾经去过台湾的人请教,以进一步了解台湾。听说台北美食多多,AI兴奋地说想要常常小笼包、路边摊,所以这次的台湾之行,除了要参加音乐节和拍摄特辑,还顺带要向日本观众介绍台湾美食,这也使AI欣喜不已。 台湾表演大获成功后,AI也表示自己想要更了解华人音乐,有机会的话,也希望能够像平井坚、安室奈美惠等日本歌手一样,可以在台湾等地开演唱会,和台湾的歌手同台献艺。其实AI出国献艺已经不是第一次,在几个月前的韩国汉城MTV BUZZ ASIA演唱会中,AI也曾把歌词改为韩文,而这次为了更贴近观众,AI也把歌词改成了中文来演唱。为期四天的台湾之行,AI让更多的人领略了她的“小天后”风采,也顺便为自己今秋将要展开的全国巡演造势。
2. UI设计需要学什么,学编程吗
UI设计师所设计出来的作品被更多的人所称赞和使用是每个UI设计师的梦想,对于零基础学习UI设计的小白来说,入门UI设计要学习的东西太多了。UI设计负责APP、Web、H5等页面的色彩、布局、icon、字体方面的设计工作。设计是跟美有关的共,需要掌握一定的绘画技巧、计理论、掌握设计软件、逻辑取舍等内容。
1、绘画技巧
美术高考主要考的三大项:素描、速写、色彩,绘画入门的三大基础课题,学习过程顺序逐步覆盖。如果已经在第一部分看完了些书籍,学习基础绘画的过程中在纸张上对现实世界的物体进行细致准确的描绘,需要更仔细的观察事物。
2、设计理论
设计理论在理论不断被完善的今天,要做出好的设计一样是可以通过理论学习实践产生,一定不要认为这是天赋上的差距,别人比自己就更有艺术细胞。
3、设计软件
学习软件,以下几种软件是必不可少的:PS、AI、DW、Sketch……其余的根据爱好自己补充。其实ui设计需要的基础并不难,一些简单的美术基础和平面设计的基础,要求也不算很高,不太需要编程。流程大致可分为5个阶段,PS ,Illustrator , DW,InDesign都会用到,但不需要都会只需学会PS,AI,AE等软件就可以了,毕竟我们不是程序员不需要学习代码什么的。一个是熟练工具,另外是设计知识以及创意想法的练习。
软件设计师的工具和设计知识。软件知识:PS、AI、AE、ARP、DW;理论知识:创意,审美,心理学,沟通学,管理,运营,文案,演讲等设计理论原理。
4、设计逻辑
作为UI设计师,是必须掌握前端的对应技能的,这不是可以完全无限制的发挥设计技艺的地方,要有取舍跟上前端开发的逻辑,做出稳定可以被实现的设计稿。学会HTML5、CSS3、 JQ的入门、安卓,IOS实现规范。
5、鉴赏模仿
特地把这点放到后面,也是有理由的,前面的步奏都是一个设计师基础素养的实现,而一个出色设计师还需要培养自己的套路和风格——站在巨人的肩膀上。你要学会如何辨别优秀的作品,可以从多个渠道收集优秀作品和案例。
3. 编程和人工智能有什么区别
无人机编程和计算机编程区别为:知识不同、操作不同、适合人群不同。一、知识不同1、无人机编程:无人机编程不仅涉及编程的知识,还需要了解无人机飞行原理等方面的知识。2、计算机编程:计算机编程需要的是编程相关的知识。二、操作不同1、无人机编程:无人机编程是通过给无人机编写程序,让无人机完成相应的指令。2、计算机编程:计算机编程是直接在电脑上操作,没有实物要求。三、适合人群不同1、无人机编程:无人机编程强调动手能力,适合低龄儿童操作。2、计算机编程:计算机编程强调逻辑思维,适合专业技术程序员操作。
4. AI应用程序关闭,这是什么原因
近日,有程序员开发出一款名叫DeepNude的应用备受外界关注,这款应用之所以“走红”是只要给DeepNude一张女性照片,借助神经网络技术,App可以自动“脱掉”女性身上的衣服,显示出裸体。如此有争议的做法,受到了AI人工智能行业工作者的强烈不满,在大家看来,这与早前的DeepFakes换脸应用类似,DeepNude同样打开了AI工具的阴暗面,因为开发者很难确保其他人会恪守道德准则。迫于外界的舆论压力,开发者已经关闭了DeepNude应用程序。
其在Twitter消息中写到:“我们其实并不希望以这样的方式去赚钱”。反“色情复仇”组织Badass的创始人凯特琳·鲍登感叹说:“真是让人震惊。现在每个人都有可能成为色情报复的受害者,即使没有拍过一张裸体照片,也可能会成为受害者。这样的技术根本不应该向公众开放。”
这个程序下架了,你是不是也能松一口气了?小编觉得应该给AI的应用场景进行一下法律约束了,评论说说你的看法吧
5. 哪个品牌的笔记本电脑性价比比较高
第一:IBMThinkPad系列。该系列笔记本电脑俗称“小黑”,主色调、款式固定。IBM笔记本作为一个大品牌,质量、定位、价格都很优秀。笔记本相关领域专利技术约1000种。ThinkPad可以说是一款追求性能和便携稳定的电脑,也是发烧友的绝佳选择。第二名:苹果MAC系列。对于这台Mac来说,并不是像我们想象的那样是苹果生产的。它的核心是不同于IBM标准的PC。可以说是pc的局外人。换句话说,苹果相当于一个精简的IBM加上一个精简的微软。因为它起初只是白色的,所以被称为“小白”。如果说这款IBM是最实用最强大的笔记本,那么这款苹果就相当于最艺术最火星的笔记本。第三名:惠普旗下的康柏。这个笔记本品牌在当年也是非常主流的机器。康柏有时能与IBM竞争。目前虽然归惠普所有,但仍使用康柏logo。可以说,康柏实际上是商务笔记本的代名词。质量和口碑就不用说了,家用康柏其实比商用的差很多。第四名:富士通。这款富士通在日本堪称“IBM”,也是日本笔记本中最火的品牌。第五名:东芝。就这台东芝笔记本而言,它是世界上第一台真正的笔记本电脑。久而久之,这个品牌的笔记本现在走的是时尚路线,对应的质量和富士通比起来有点粗糙。
6. ai必要的技术基础是什么
I开发专业人员必须掌握数学中的概率知识,这也是机器学习的基础所在。传统软件开发人员经常使用在线库,这意味着他们不需要亲自进行数学计算。但AI开发人员则需要有能力编写并理解复杂的算法,以便不断从数据当中找出洞察见解与基本模式。——Blair Thomas,eMerchantBroker
2. 首先要建立坚实的知识基础
在开始接触AI之前,大家首先应当建立起坚实的知识基础。其中最重要的,自然是掌握编程基础知识(Python是机器学习场景下的最佳编程语言之一)以及数学(包括线性代数、统计学与微积分),同时磨练自己的抽象思维能力。虽然大家不需要专业的学位来掌握AI与ML,但无限的激情绝对是一项必要前提。)Rahul Varshneya,ResumeSeed
3. 熟练掌握Python
AI技术正在快速发展,那些能够洞悉AI奥秘的人们将在人才竞争中领先于对手。Python是这一领域中的首选编程语言,它易于理解及编写,提供大量库选项并具备庞大的用户社区。另外,Python还支持TensorFlow、PyTorch以及Keras等高人气机器学习与深度学习实现框架。——Susan ERebner,Cyleron
4. 在互联网上搜索免费资源与在线课程
如果大家有意了解更多与AI技术相关的信息,请先从最简单的切入点着手:谷歌搜索。这里有大量免费资源、文章以及在线课程,帮助各位快速对接正持续发展的AI开发世界。这些免费资源为新晋程序员们提供了一种简单且风险极低的AI参与方式,您可以先通过体验判断自己是否真的打算投身于其中。——David Chen, Sharebert
5. 掌握强大的抽象思维能力
抽象思维或者说深层推理能力,是指机器理解事物之间隐含关系的能力。这种能力要比单纯的学习逻辑、统计学或者数学议程更加“模糊”。但只有掌握了关系推理,大家才能在明确与直接的规则之外,更好地理解AI开发中的细微差别与复杂性元素。——Shu Saito,Godai
6. 利用AI算法尝试构建简单成果
迈向AI学习的成功关键之一,在于首先建立起对AI系统工作原理的明确理解与强烈直觉。培养这种直觉的一种有效方式,就是先从简单的项目入手。例如,您可以选择一个自己感兴趣的项目并为其挑选合适的简单AI算法,而后从零开始构建这一算法。虽然可能存在着陡峭的学习曲线,但您将在这一过程中学到很多,并逐步获得长期收益。——Sean Hinton,SkyHive
7. 了解人类洞察力如何与计算机编程相对接
为了成长为更强大的AI开发者,大家必须在统计学与数据科学方面建立起坚实的基础。为了编写出有效的AI语言表达,大家必须了解基本数学原理并有能力解释现有数据中的含义。您需要将计算机编程与人类洞察力对接起来,才能在AI开发当中取得成功。Jared Weitz,United Capital Source
8. 学习如何收集正确的数据
AI非常适合一次性处理大量数据。因此在考虑创建AI软件时,大家应当首先解决数据点方面的问题(例如选定客户服务及营销系统作为数据来源),而后以此为基础建立一款能够快速完成繁重数据处理任务的软件。——Syed Balkhi,WPBeginner
9. 加入在线社区
Kaggle是一个专门面向数据科学家与机器学习人士的在线社区。该平台允许用户查找并发布数据集,在基于Web的数据科学环境当中构建模型,并与其他机器学习工程师顺畅沟通等等。大家可以借此机会从其他从业者身上学习经验,甚至可以参加比赛以提高自己的技术水平。——Stephanie Wells,Formidable Forms
10. 熟悉不同的AI类型
人工智能当中包含一系列不同领域,大家应当全面研究,免得在投入大量时间与精力之后才发现不适合自己。对不同AI类型进行探索,一步步稳扎稳打地学习,同时避免因学习内容过多而产生倦怠情绪
7. vivos15有人工智能吗
S15支持人工智能助理—Jovi,可点击此链接了解Jovi;
可参考以下设置Jovi语音助手方法
设置语音唤醒:
1、进入设置--Jovi--(Jovi能力设置)--语音助手--语音唤醒--开启语音唤醒--唤醒词--选择“小V小V”或“Hi,Jovi’”;
点击此链接查看图文。
8. 如何评价综艺节目《燃烧吧!天才程序员》综艺的主题是什么
“燃烧吧!天才程序员”节目是由蚂蚁安全实验室主办的,奖金为100万的网络安全攻防+AI联合竞赛。共20位选手参加,分为四队,基本都是90后,有CMU、清华北大等名校同学,也有多次获得网络竞赛Top、Kaggle Grandmaster的大佬
第二个反转,是第二天的时候,我一度怀疑0.9999和秋后的奶茶这两个队放弃了比赛,AI赛道一直是0分。结果没想到0.9999队里几个没做过目标检测任务的小哥,经过一天的学习,迅速把分数干上去了,这想必就是kaggle grandmaster的实力吧。第三个反转,是秋后的奶茶队中全场唯一女选手的逆袭。虽然我也是女生,但不得不承认在看到排名时也对性别打了某些tag,看到她一个人在电脑前焦急的画面也跟着担忧。没想到她后来居上,甚至在队友们都休息的时候还在一个人努力刷成绩,一下冲到了第一。
就像节目开头问到的,说起程序员,你会想到什么?
不修边幅、内向、呆板、不善言辞、邋遢、格子衫、宅、码农、发际线、修电脑的...
连做程序媛的自己,都会先想到这些tag。
但这个节目,却让我看到了“程序员”群体下一个个优秀的个体和有趣的灵魂。
我完全被圆滚滚又搞笑的何立人圈粉,也为同是女生在默默努力的淑婷捏了好几把汗,还怀疑又佩服曾兆阳的过分自信。
思维缜密、年轻、智慧、热血、坚持、谦逊...也同样是“程序员”关联的词语。
因为科技发展和职业性质的关系,程序员群体直接与公众接触的机会并不多,但随着幼儿编程的内卷和社会信息化,相信会有越来越多的人了解到我们这个优秀大气开朗纯洁脱俗优雅活泼率直动人NB的群体。
最后,再次为节目组和选手们点赞。
好看的皮囊千篇一律,有趣的灵魂万里挑一。
9. AI20年内会给我们的生活带来着怎样的改变
AI20年内会给我们的生活带来的改变有:语音、声音、图像和视频的识别能力将得到提升;个人助理将更加智能化;越来越多的系统将实现自动化;AI将被更多的企业所使用;自我学习系统将推动未来的教育娱乐发展;智能互联网将获得突破。
1、语音、声音、图像和视频的识别能力将得到提升
在接下来的几年里,人工智能对于语音、声音、图像和视频的识别能力将得到进一步的改进和提升,进而显着改进我们与设备间的交互方式。无处不在的廉价传感器和摄像头将能够实时处理更多的数据流。
搭配上性能达标的廉价处理器和存储器,将能够让AI设备在有效处理数据的基础上更具成本效益,并最终把自我学习的成果保存在本地存储中。这些AI系统将更加广泛地用在工业自动化系统中,比如工厂操作系统、安全防护系统、农业和交通运输系统等领域。
5、自我学习系统将推动未来的教育娱乐发展
自我学习系统将得到进一步增强。在未来,无论是否有人在监管,AI都能够自主学习,AI也因此能够应用于更多专业领域之中。AI也将能够胜任学者或是分析学家的角色,而这种类型的AI系统就可以应用于教育领域——就像是一名真正老师在教学生学习功课那样。
这样的技术同样能够用于人物性格的塑造、电影情景的描绘或是交互式虚拟现实的游戏中。
6、智能互联网将获得突破
随着AI技术发展,越来越多的人工智能助手涌现出来,如果它们之间能够相互合作的话,将会极大的提升服务效率。
AI也将为设计师和程序员带来了便利——自动化操作模式下,AI能够按照他们的要求自动完成相应的设计和编程工作。对于这种AI导向型的交互设计或项目,人们的满意度将会更高——因为AI系统能够在其他用户与程序的交互过程中自动学习,并在设计层面加以优化,提升用户使用体验。
10. NCT全国青少年编程能力等级测试含金量如何是否推荐报名
含金量挺高的,推荐报名。
在目前的市场中,NCT全国青少年编程能力等级测试无疑是最推荐报名的那一个。原因如下:
1、题库设计严密、难度逐级提升
NCT编程等级考试科目涵盖范围比较大,考试依据不同能力层次的考察需求,被设计分为多个等级,涵盖图形化编程(1-3级)、Python编程(1-4级)两大类别。
其题库设计也比较严密细致,考试难度逐级提升,学员可按照等级制度逐级报考,每考一级都会有相应的等级证书,直到拿下最高级别的证书。
不仅如此,NCT编程等级考试中不同等级的考试试题,均是经过教育专家团的精心设计与论证,并在一定程度融合了青少年身心成长的特点,每一级别的考试均对标基础思维能力的引导与锻炼,在某种程度上能达到“以考促评”、“以评促学”的科学学习效果。
2、专家实力雄厚、技术能力突出
NCT编程等级考试由 36 位教育专家组成学术委员会,覆盖教育部义务教育阶段信息技术课标教材组核心专家、海内外高等院校计算机专业教授、一线中小学编程教育老师、创客教育工作者及儿童教育领域专家。
同时,NCT编程等级考试还是国内首个完成青少年编程线上考试的等考项目,通过先进技术引领行业测评组织形式变革。
2020年NCT春季线上考参与人数为1万多人,考生覆盖全国34个省级行政区及加拿大、美国、新加坡等海外地区,包括人大附中、北京大学附属小学、北京师范大学实验小学、杭州市实验外国语学校、武汉大学第一附属小学、武汉市实验外国语学校等名校在内的2000多所学校、机构参与。
3、证书含金量高、直通蓝桥杯青少组省赛指定赛项
2020年,NCT全国青少年编程能力等级测试联合工业和信息化部人才交流中心主办的蓝桥杯大赛青少组成立赛考联盟,NCT成绩通过的考生可直通蓝桥杯大赛青少组省赛(Kitten赛项)。
接受编程教育,取得权威等级证书,在升学择校、海外深造时可作为科技特长参考材料,提高孩子的核心竞争力。
考试迎来数大亮点:
亮点 1:考试专业度升级,36 位权威专家组成学术专家团
NCT 组委会重点打造了一支高素质、专业化的创新型学术队伍,组织国内外 36 名知名计算机科学、编程教育方面的专家、教授、一线信息技术教研员,以及拥有丰富研发经验的课程专家顾问,组成了“NCT 学术专家团”,为 NCT 考试的科学化、规范化发展蓄能。
亮点 2:考试工具多元化升级,覆盖海内外通用编程工具
NCT 全国青少年编程能力等级测试秉承开放性、前瞻性与创新性的特质,对考试工具进行了多元化升级。
目前考试工具已涵盖了 Scratch、Kitten、Python 等海内外拥有广泛用户基础的热门通用编程工具。多元化编程考试工具意味着考生可以自主选择自己熟悉的编程语言,稳定发挥技术实力。
亮点 3:考试教学资源升级,推出官方指定教材、课程包
为切实有效完成“考有所学、以考促学”的效果,“NCT 全国青少年编程能力等级测试”组委会进行了教学资源升级,正式推出了官方指定教材与课程。
教材知识点大纲严格匹配《青少年编程能力等级》标准,可作为考生日常备考学习资料。NCT 组委会将充分发挥积极性、主动性和创造性,不断提高教材实施和使用水平。
亮点 4:考试合作培训单位升级,新增多家海内外知名少儿编程品牌
2020 年9 月 NCT 全国青少年编程能力等级测试一经发布便获得广泛关注,受到网易有道旗下少儿编程产品有道小图灵和有道卡搭、新西兰知名少儿编程品牌 BestCoder Ecation 在内的上百家编程机构积极响应。
优质合作单位雄厚的师资、成熟的课程体系、优质的服务管理以及高水平的教学资源等优势均将给考生带来更多专业、丰富的考试服务体验。