⑴ 怎么用命令行删除hdfs上的文件
命令:hadoop fs -rmr /home/mm/lily2(要求是你把hadoop的bin加到PATH中,并开启hadoop)
rm -rf /home/mm/lily2(这是删除linux文件系统的文件夹)。
删除目录
rd /s /q "c:\hello"
rem 加引号可以防止因路径中有空格而出错
rem 上面的代码意为:删除c:\hello目录下所有的内容(包括"c:\hello")
删除文件
del /f /q /s "c:\hello\*.*"
rem 删除c;\hello文件夹下所有的文件,包括子文件夹的内容,(不包括子文件夹,也不包括c:\hello文件夹)
rem 文件夹=目录
⑵ hadoop常用shell命令怎么用
一、常用的hadoop命令
1、hadoop的fs命令
#查看hadoop所有的fs命令
1
hadoop fs
#上传文件(put与FromLocal都是上传命令)
1
2
hadoop fs -put jdk-7u55-linux-i586.tar.gz hdfs://hucc01:9000/jdk
hadoop fs -FromLocal jdk-7u55-linux-i586.tar.gz hdfs://hucc01:9000/jdk
#下载命令(get与ToLocal都是下载命令)
1
2
hadoop fs -get hdfs://hucc01:9000/jdk jdk1.7
hadoop fs -ToLocal hdfs://hucc01:9000/jdk jdk1.7
#将本地一个或者多个文件追加到hdfs文件中(appendToFile)
1
hadoop fs -appendToFile install.log /words
#查询hdfs的所有文件(ls)
1
hadoop fs -ls /
#帮助命令(help)
1
hadoop fs -help fs
#查看hdfs文件的内容(cat和text)
1
2
hadoop fs -cat /words
hadoop fs -text /words
#删除hdfs文件(rm)
1
hadoop fs -rm -r /words
#统计hdfs文件和文件夹的数量(count)
1
hadoop fs -count -r /
#合并hdfs某个文件夹的文件,并且下载到本地(getmerge)
1
hadoop fs -getmerge / merge
#将本地文件剪切到hdfs,相当于对本地文件上传后再删除(moveFormLocal)
1
hadoop fs -moveFromLocal words /
#查看当前文件系统的使用状态(df)
1
hadoop fs -df
二、常用的hdfs命令(这个用的比较多)
用法跟hadoop命令一样,推荐2.0之后使用hdfs命令
1
hdfs dfs
⑶ HDFS和本地文件系统文件互导
初步了解一下情况,后续根据给出案例
一、从本地文件系统到HDFS
使用hdfs自带的命令
命令:hdfs dfs -FromLocal inputPath outputPath
inputPath:本地文件目录的路径
outputPath:hdfs文件目录路径,即存储路径
二、从HDFS到本地文件系统
命令:hdfs dfs -ToLocal inputPath outputPath
inputPath:hdfs文件目录
outputPath:本地文件文件目录,即本地存储路径
因为Hbas和Hive都在存储在HDFS中,所以可以通过该条命令可以把Hbase和Hive存储在HDFS中的文件复制出来。但是经过实践,通过这种方式复制出来的Hbase文件是乱码。Hive里的文件有时候也会乱码,这取决于Hive数据的插入方式。
三、文件在HDFS内的移动
1、从Hbase表导出数据到HDFS
命令:hbase org.apache.hadoop.hbase.maprece.Export tableName outputPaht
例子:hbase org.apache.hadoop.hbase.maprece.Export test /user/data
test为需要从Hbase中导出的表,/user/data为hdfs上的路径,即存储路径,如果最后一个参数有前缀file:// 则为本地上的文件存储系统
2、从HDFS导入到Hbase表中,需要事先建立好表结构
命令:hbase org.apache.hadoop.hbase.maprece.Export tableName inputPaht
例子:hbase org.apache.hadoop.hbase.maprece.Import test1 /temp/part-m-00000
案列:
两个不同环境数据,数据导入
过程描述:
导出正式环境数据到hdfs中,然后从hdfs中导出到本地,本地传到测试环境主机,然后从本地导入到hdfs中,再从hdfs中导入到hbase中。
处理过程:
1、注意事项:1、权限问题使用hdfs:sudo -u hdfs ;
2、存放上传路径最好不要在root下
3、上传完成后,查看是否在使用,数据已经插入。
1、sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Export ** /hbase/**_bak (导出到hdfs中的**_bak)
2、hdfs dfs -ToLocal /hbase/sw_bak /test (导出hdfs中文件到本地test,注:提前建好目录)
3、scp -r test_bak [email protected].**:/root/test (传送目录到测试环境主机目录下,注:传到测试环境后,把文件不要放到root的目录下,换家目录下)
4、sudo -u hdfs hdfs dfs -FromLocal /chenzeng/text_bak /data (把sw传到hdfs 中,注意上传时,文件路径要对,放在data路径下比较好)
5、sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Import test /data/test_bak/part-m-0000 (注意上次文件)
6、在hbase shell 中查看test :count 'test' 确认是否上传成功
优化:
truncate ‘’
正式环境导入至hdfs中时,
可以直接在另一个环境的执行sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Import test hdfs://server243:8020/hbase**** 可以直接加主机和对应路径进行put。
⑷ HDFS中根目录下创建user文件夹的命令为
HDFS中根目录下创建user文件夹的命令为hadoop dfs-mkdir。在hdfs中创建一个input文件夹:hadoopfs-mkdir/input/1、使用参数-p创建多级目录:hadoopfs-mkdir-p/input/file1。拷贝input目录到hdfs系统的时候,不是采用的hadoop用户,而是用root用户执行的拷贝命令。
hdfs的特点和目标:
1、硬件故障
硬件故障是常态,而不是异常。整个HDFS系统将由数百或数千个存储着文件数据片段的服务器组成。实际上它里面有非常巨大的组成部分,每一个组成部分都很可能出现故障,这就意味着HDFS里的总是有一些部件是失效的,因此,故障的检测和自动快速恢复是HDFS一个很核心的设计目标。
2、数据访问
运行在HDFS之上的应用程序必须流式地访问它们的数据集,它不是运行在普通文件系统之上的普通程序。HDFS被设计成适合批量处理的,而不是用户交互式的。重点是在数据吞吐量,而不是数据访问的反应时间,POSIX的很多硬性需求对于HDFS应用都是非必须的,去掉POSIX一小部分关键语义可以获得更好的数据吞吐率。
3、大数据集
运行在HDFS之上的程序有很大量的数据集。典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。
以上内容参考:网络-hdfs
⑸ hdfs命令查找文件所在路径
指令
hadoop fsck /user/hadoop/filename -files -blocks -locations -racks
-files 文件分块信息,
-blocks 在带-files参数后才显示block信息
-locations 在带-blocks参数后才显示block块所在datanode的具体IP位置,
-racks 在带-files参数后显示机架位置
注意:此命令只能在namenode里输入,在datanode里输入会报错的
⑹ spark、hive、impala、hdfs的常用命令
对spark、hive、impala、hdfs的常用命令作了如下总结,欢迎大家补充!
1. Spark的使用:
以通过SecureCRT访问IP地址:10.10.234.198 为例进行说明:
先输入:ll //查询集群是否装有spark
>su - mr
>/home/mr/spark/bin/beeline -u "jdbc:hive2:/bigdata198:18000/" -n mr -p ""
>show databases; //显示其中数据库,例如
>use bigmax; //使用数据库bigmax
>show tables; //查询目录中所有的表
>desc formatted TableName; //显示表的详细信息,包括分区、字段、地址等信息
>desc TableName; //显示表中的字段和分区信息
>select count(*) from TableName; //显示表中数据数量,可以用来判断表是否为空
>drop table TableName; //删除表的信息
>drop bigmax //删除数据库bigmax
>describe database zxvmax //查询数据库zxvmax信息
创建一个表
第一步:
>create external table if not exists lte_Amaze //创建一个叫lte_Amaze的表
( //括号中每一行为表中的各个字段的名称和其所属的数据类型,并用空格隔开
DateTime String,
MilliSec int,
Network int,
eNodeBID int,
CID int,
IMSI String,
DataType int,
AoA int,
ServerRsrp int,
ServerRsrq int,
TA int,
Cqi0 Tinyint,
Cqi1 Tinyint //注意,最后一个字段结束后,没有逗号
)
partitioned by (p_date string, p_hour INT) //以p_date和p_hour作为分区
row format delimited fields terminated by ',' /*/*表中行结构是以逗号作为分隔符,与上边的表中字段以逗号结尾相一致*/
stored as textfile; //以文本格式进行保存
第二步:添加分区,指定分区的位置
>alter table lte_Amaze add partition (p_date='2015-01-27',p_hour=0) location'/lte/nds/mr/lte_nds_cdt_uedetail/p_date=2015-01-27/p_hour=0';
//添加lte_Amaze表中分区信息,进行赋值。
//并制定分区对应目录/lte/nds/mr下表lte_nds_cdt_uedetail中对应分区信息
第三步:察看添加的结果
>show partitions lte_Amaze; //显示表的分区信息
2. hdfs使用:
#su - hdfs //切换到hdfs用户下 、
#hadoop fs –ls ///查看进程
# cd /hdfs/bin //进入hdfs安装bin目录
>hadoop fs -ls /umtsd/cdt/ //查询/umtsd/cdt/文件目录
>hadoop fs -mkdir /umtsd/test //在/umtsd目录下创建test目录
>hadoop fs -put /home/data/u1002.csv /impala/data/u5002 //将home/data/u1002.csv这个文件put到hdfs文件目录上。put到hdfs上的数据文件以逗号“,”分隔符文件(csv),数据不论类型,直接是数据,没有双引号和单引号
>hadoop fs -rm /umtsd/test/test.txt //删除umtsd/test目录下的test.txt文件
>hadoop fs -cat /umtsd/test/test.txt //查看umtsd/test目录下的test.txt文件内容
3hive操作使用:
#su - mr //切换到mr用户下
#hive //进入hive查询操作界面
hive>show tables; //查询当前创建的所有表
hive>show databases; //查询当前创建的数据库
hive>describe table_name; {或者desc table_name}//查看表的字段的定义和分区信息,有明确区分(impala下该命令把分区信息以字段的形式显示出来,不怎么好区分)
hive> show partitions table_name; //查看表对应数据现有的分区信息,impala下没有该命令
hive> quit;//退出hive操作界面
hive>desc formatted table_name; 查看表结构,分隔符等信息
hive> alter table ceshi change id id int; 修改表的列数据类型 //将id数据类型修改为int 注意是两个id
hive> SHOW TABLES '.*s'; 按正条件(正则表达式)显示表,
[mr@aico ~]$ exit; 退出mr用户操作界面,到[root@aico]界面
impala操作使用:
#su - mr //切换到mr用户下
#cd impala/bin //进入impala安装bin目录
#/impala/bin> impala-shell.sh -i 10.10.234.166/localhost //进入impala查询操作界面
[10.10.234.166:21000] >show databases; //查询当前创建的数据库
[10.10.234.166:21000] >use database_name; //选择使用数据库,默认情况下是使用default数据库
[10.10.234.166:21000] > show tables; //查询当前数据库下创建的所有表
[10.10.234.166:21000] >describe table_name; //查看表的字段的定义,包括分区信息,没有明确区分
[10.10.234.166:21000] > describe formatted table_name; //查看表对应格式化信息,包括分区,所属数据库,创建用户,创建时间等详细信息。
[10.10.234.166:21000] >refresh table_name; //刷新一下,保证元数据是最新的
[10.10.234.166:21000] > alter TABLE U107 ADD PARTITION(reportDate="2013-09-27",rncid=487)LOCATION '/umts/cdt/
MREMITABLE/20130927/rncid=487' //添加分区信息,具体的表和数据的对应关系
[10.10.234.166:21000] > alter TABLE U100 drop PARTITION(reportDate="2013-09-25",rncid=487); //删除现有的分区,数据与表的关联
[10.10.234.166:21000] >quit; //退出impala操作界面
[mr@aicod bin]$ impala-shell; 得到welcome impala的信息,进入impala 查询操作界面
[aicod:21000] > 按两次tab键,查看可以用的命令
alter describe help profile shell values
connect drop history quit show version
create exit insert select unset with
desc explain load set use
⑺ 在hadoop中什么命令的功能是将一个或多个
1、启动hadoop所有进程
start-all.sh等价于start-dfs.sh + start-yarn.sh
但是一般不推荐使用start-all.sh(因为开源框架中内部命令启动有很多问题)。
2、单进程启动。
sbin/start-dfs.sh
---------------
sbin/hadoop-daemons.sh --config .. --hostname .. start namenode ...
sbin/hadoop-daemons.sh --config .. --hostname .. start datanode ...
sbin/hadoop-daemons.sh --config .. --hostname .. start sescondarynamenode ...
sbin/hadoop-daemons.sh --config .. --hostname .. start zkfc ... //
sbin/start-yarn.sh
--------------
libexec/yarn-config.sh
sbin/yarn-daemon.sh --config $YARN_CONF_DIR start resourcemanager
sbin/yarn-daemons.sh --config $YARN_CONF_DIR start nodemanager
3、常用命令
1、查看指定目录下内容
hdfs dfs –ls [文件目录]
hdfs dfs -ls -R / //显式目录结构
eg: hdfs dfs –ls /user/wangkai.pt
2、打开某个已存在文件
hdfs dfs –cat [file_path]
eg:hdfs dfs -cat /user/wangkai.pt/data.txt
3、将本地文件存储至hadoop
hdfs dfs –put [本地地址] [hadoop目录]
hdfs dfs –put /home/t/file.txt /user/t
4、将本地文件夹存储至hadoop
hdfs dfs –put [本地目录] [hadoop目录]
hdfs dfs –put /home/t/dir_name /user/t
(dir_name是文件夹名)
5、将hadoop上某个文件down至本地已有目录下
hadoop dfs -get [文件目录] [本地目录]
hadoop dfs –get /user/t/ok.txt /home/t
6、删除hadoop上指定文件
hdfs dfs –rm [文件地址]
hdfs dfs –rm /user/t/ok.txt
7、删除hadoop上指定文件夹(包含子目录等)
hdfs dfs –rm [目录地址]
hdfs dfs –rmr /user/t
8、在hadoop指定目录内创建新目录
hdfs dfs –mkdir /user/t
hdfs dfs -mkdir - p /user/centos/hadoop
9、在hadoop指定目录下新建一个空文件
使用touchz命令:
hdfs dfs -touchz /user/new.txt
10、将hadoop上某个文件重命名
使用mv命令:
hdfs dfs –mv /user/test.txt /user/ok.txt (将test.txt重命名为ok.txt)
11、将hadoop指定目录下所有内容保存为一个文件,同时down至本地
hdfs dfs –getmerge /user /home/t
12、将正在运行的hadoop作业kill掉
hadoop job –kill [job-id]
13.查看帮助
hdfs dfs -help
4、安全模式
(1)退出安全模式
NameNode在启动时会自动进入安全模式。安全模式是NameNode的一种状态,在这个阶段,文件系统不允许有任何修改。
系统显示Name node in safe mode,说明系统正处于安全模式,这时只需要等待十几秒即可,也可通过下面的命令退出安全模式:/usr/local/hadoop$bin/hadoop dfsadmin -safemode leave
(2) 进入安全模式
在必要情况下,可以通过以下命令把HDFS置于安全模式:/usr/local/hadoop$bin/hadoop dfsadmin -safemode enter
5、节点添加
添加一个新的DataNode节点,先在新加节点上安装好Hadoop,要和NameNode使用相同的配置(可以直接从NameNode复制),修改HADOOPHOME/conf/master文件,加入NameNode主机名。然后在NameNode节点上修改HADOOPHOME/conf/master文件,加入NameNode主机名。然后在NameNode节点上修改HADOOP_HOME/conf/slaves文件,加入新节点名,再建立新加节点无密码的SSH连接,运行启动命令为:/usr/local/hadoop$bin/start-all.sh
6、负载均衡
HDFS的数据在各个DataNode中的分布可能很不均匀,尤其是在DataNode节点出现故障或新增DataNode节点时。新增数据块时NameNode对DataNode节点的选择策略也有可能导致数据块分布不均匀。用户可以使用命令重新平衡DataNode上的数据块的分布:/usr/local/hadoop$bin/start-balancer.sh
7、补充
1.对hdfs操作的命令格式是hdfs dfs
1.1 -ls 表示对hdfs下一级目录的查看
1.2 -lsr 表示对hdfs目录的递归查看
1.3 -mkdir 创建目录
1.4 -put 从Linux上传文件到hdfs
1.5 -get 从hdfs下载文件到linux
1.6 -text 查看文件内容
1.7 -rm 表示删除文件
1.7 -rmr 表示递归删除文件
2.hdfs在对数据存储进行block划分时,如果文件大小超过block,那么按照block大小进行划分;不如block size的,划分为一个块,是实际数据大小。
*****PermissionDenyException 权限不足**********
hadoop常用命令:
hdfs dfs 查看Hadoop HDFS支持的所有命令
hdfs dfs –ls 列出目录及文件信息
hdfs dfs –lsr 循环列出目录、子目录及文件信息
hdfs dfs –put test.txt /user/sunlightcs 将本地文件系统的test.txt复制到HDFS文件系统的/user/sunlightcs目录下
hdfs dfs –get /user/sunlightcs/test.txt . 将HDFS中的test.txt复制到本地文件系统中,与-put命令相反
hdfs dfs –cat /user/sunlightcs/test.txt 查看HDFS文件系统里test.txt的内容
hdfs dfs –tail /user/sunlightcs/test.txt 查看最后1KB的内容
hdfs dfs –rm /user/sunlightcs/test.txt 从HDFS文件系统删除test.txt文件,rm命令也可以删除空目录
hdfs dfs –rmr /user/sunlightcs 删除/user/sunlightcs目录以及所有子目录
hdfs dfs –FromLocal test.txt /user/sunlightcs/test.txt 从本地文件系统复制文件到HDFS文件系统,等同于put命令
hdfs dfs –ToLocal /user/sunlightcs/test.txt test.txt 从HDFS文件系统复制文件到本地文件系统,等同于get命令
hdfs dfs –chgrp [-R] /user/sunlightcs 修改HDFS系统中/user/sunlightcs目录所属群组,选项-R递归执行,跟linux命令一样
hdfs dfs –chown [-R] /user/sunlightcs 修改HDFS系统中/user/sunlightcs目录拥有者,选项-R递归执行
hdfs dfs –chmod [-R] MODE /user/sunlightcs 修改HDFS系统中/user/sunlightcs目录权限,MODE可以为相应权限的3位数或+/-{rwx},选项-R递归执行
hdfs dfs –count [-q] PATH 查看PATH目录下,子目录数、文件数、文件大小、文件名/目录名
hdfs dfs –cp SRC [SRC …] DST 将文件从SRC复制到DST,如果指定了多个SRC,则DST必须为一个目录
hdfs dfs – PATH 显示该目录中每个文件或目录的大小
hdfs dfs –s PATH 类似于,PATH为目录时,会显示该目录的总大小
hdfs dfs –expunge 清空回收站,文件被删除时,它首先会移到临时目录.Trash/中,当超过延迟时间之后,文件才会被永久删除
hdfs dfs –getmerge SRC [SRC …] LOCALDST [addnl] 获取由SRC指定的所有文件,将它们合并为单个文件,并写入本地文件系统中的LOCALDST,选项addnl将在每个文件的末尾处加上一个换行符
hdfs dfs –touchz PATH 创建长度为0的空文件
hdfs dfs –test –[ezd] PATH 对PATH进行如下类型的检查: -e PATH是否存在,如果PATH存在,返回0,否则返回1 -z 文件是否为空,如果长度为0,返回0,否则返回1 -d 是否为目录,如果PATH为目录,返回0,否则返回1
hdfs dfs –text PATH 显示文件的内容,当文件为文本文件时,等同于cat,文件为压缩格式(gzip以及hadoop的二进制序列文件格式)时,会先解压缩 hdfs dfs –help ls 查看某个[ls]命令的帮助文档
本文转自 https://www.cnblogs.com/LHWorldBlog/p/8514994.html
⑻ hadoop面试题之HDFS
1、简单介绍下hadoop吧?
广义上hadoop是指与hadoop相关的大数据生态圈。包含hive、spark、hbase等。
狭义上hadoop指的是apache的开源框架。有三个核心组件:
----hdfs:分布式文件存储系统
----yarn:分布式资源管理调度平台
----mr:分布式计算引擎
2、介绍下hdfs?
全称为Hadoop Distributed File System。有三个核心组件:
namenode:有三个作用,第一是负责保存集群的元数据信息,第二是负责维护整个集群节点的正常运行。
第三是负责处理客户端的请求。
datanode:负责实际保存数据。实际执行数据块的读写操作。
secondarynamenode:辅助namenode进行元数据的管理。不是namenode的备份。
3、namenode的工作机制?
namenode在内存中保存着整个内存系统的名称空间和文件数据块的地址映射。整个hdfs可存储的文件数受限于namenode的内存大小。所以hdfs不适合大量小文件的存储。
---namenode有三种元数据存储方式来管理元数据:
》内存元数据:内存中保存了完整的元数据
》保存在磁盘上的元数据镜像文件(fsimage):该文件时hdfs存在磁盘中的元数据检查点,里面保存的是最后一次检查点之前的hdfs文件系统中所有目录和文件的序列化信息。
》数据操作日志文件(edits):用于衔接内存meta data和持久化元数据镜像fsimage之间的操作日志文件。保存了自最后一次检查点之后所有针对hdfs文件系统的操作。如对文件的增删改查。
4、如何查看元数据信息?
因为edits和fsimage文件是经过序列化的,所以不能直接查看。hadoop2.0以上提供了查看两种文件的工具。
----命令:hdfs oiv 可以将fsimage文件转换成其他格式,如xml和文本文件。-i 表示输入fsimage文件。-o 输出文件路径,-p 指定输出文件
hdfs oev可以查看edits文件。同理需要指定相关参数。
详情查看: https://www.imooc.com/article/79705
4、datanode的工作机制?
1)以数据块的形式存储hdfs文件
2)datanode响应客户端的读写请求
3)周期性的向namenode汇报心跳信息、数据块信息、缓存数据块信息
5、secondary namenode工作机制?
当发生checkpoint机制时会触发second namenode进行工作。checkpoint:
新的edists文件不会立即和fsimage文件合并,是在edits文件大小超过(默认)64m,或者时间超过(默认)1小时,会触发checkpoint操作。当checkpoint时,namenode会新建一个edits.new的文件,此时second namenode将文件fsimage文件和edits文件(http get)到本地,然后加载到内存中进行合并,完成的文件名称为fsimage.ckpt。最后 second namenode将该文件(http post)到namenode,然后edits.new和fsimage.ckpt文件转换为fsimage和edits。
6、hdfs的文件副本机制?
所有的文件都是以块的形式保存到hdfs中。块的大小默认为128m。在hdfs-site文件中进行指定。
动态副本创建策略:默认副本数是3,可以在上传文件时,显式设定replication。也可以通过指令修改文件的副本数 hadoop fs -setrep -R 1
7、为实现高可用,hdfs采用了哪些策略?
副本机制、机架感知、心跳机制、安全模式、校验和、回收站、元数据保护、快照机制(具体介绍导航- https://www.jianshu.com/writer#/notebooks/44567747/notes/66453316 )
8、hdfs的存储过程?
①client向hdfs发起写请求,通过RPC与namenode建立通讯。namenode检查文件是否存在等信息,返回是否可以存储。
②client将文件切割为一个个block块,client申请存储第一块block。namenode返回可以存储这个block块的datanode的地址,假设为ABC。
③A到B到C逐级构建pipeline。client向A上传第一个packet,默认为64k。A收到一个packet后会将packet传给B,再传给C。pipeline反方向返回ack信息。最终由第一个节点A将pipelineack发送给client
④一个block完成之后,再进行下一个block的存储过程。
9、hdfs的读过程?
10、hdfs的垃圾桶机制?
hdfs的垃圾桶机制默认是关闭的,需要手动开启。hdfs删除的文件不会立刻就删除,而是在设定的时间后进行删除。
11、hdfs的扩容和缩容
【
12、