‘壹’ 实验二 K-近邻算法及应用
(1)简单,易于理解,易于实现,无需估计参数。
(2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。
(3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。
(4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。
(5)KNN还可以处理回归问题,也就是预测。
(6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。
(1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。
(2)可理解性差,无法给出像决策树那样的规则。
(3)是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢。
(4)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。
(5)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。
需要一个特别容易解释的模型的时候。
比如需要向用户解释原因的推荐算法。
通过此次实验我了解了K近邻算法及其思路,该方法的思路是:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别。
所谓k近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例。
‘贰’ KNN算法,k近邻
K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
‘叁’ 使用Node.js如何实现K最近邻分类算法
源于数据挖掘的一个作业, 这里用Node.js技术来实现一下这个机器学习中最简单的算法之一k-nearest-neighbor算法(k最近邻分类法)。
k-nearest-neighbor-classifier
还是先严谨的介绍下。急切学习法(eager learner)是在接受待分类的新元组之前就构造了分类模型,学习后的模型已经就绪,急着对未知的元组进行分类,所以称为急切学习法,诸如决策树归纳,贝叶斯分类等都是急切学习法的例子。惰性学习法(lazy learner)正好与其相反,直到给定一个待接受分类的新元组之后,才开始根据训练元组构建分类模型,在此之前只是存储着训练元组,所以称为惰性学习法,惰性学习法在分类进行时做更多的工作。
本文的knn算法就是一种惰性学习法,它被广泛应用于模式识别。knn基于类比学习,将未知的新元组与训练元组进行对比,搜索模式空间,找出最接近未知元组的k个训练元组,这里的k即是knn中的k。这k个训练元祖就是待预测元组的k个最近邻。
balabala了这么多,是不是某些同学想大喊一声..speak Chinese! 还是来通俗的解释下,然后再来看上面的理论应该会明白很多。小时候妈妈会指着各种各样的东西教我们,这是小鸭子,这个红的是苹果等等,那我们哼哧哼哧的看着应答着,多次被教后再看到的时候我们自己就能认出来这些事物了。主要是因为我们在脑海像给这个苹果贴了很多标签一样,不只是颜色这一个标签,可能还有苹果的形状大小等等。这些标签让我们看到苹果的时候不会误认为是橘子。其实这些标签就对应于机器学习中的特征这一重要概念,而训练我们识别的过程就对应于泛化这一概念。一台iphone戴了一个壳或者屏幕上有一道划痕,我们还是能认得出来它,这对于我们人来说非常简单,但蠢计算机就不知道怎么做了,需要我们好好调教它,当然也不能过度调教2333,过度调教它要把其他手机也认成iphone那就不好了,其实这就叫过度泛化。
所以特征就是提取对象的信息,泛化就是学习到隐含在这些特征背后的规律,并对新的输入给出合理的判断。
我们可以看上图,绿色的圆代表未知样本,我们选取距离其最近的k个几何图形,这k个几何图形就是未知类型样本的邻居,如果k=3,我们可以看到有两个红色的三角形,有一个蓝色的三正方形,由于红色三角形所占比例高,所以我们可以判断未知样本类型为红色三角形。扩展到一般情况时,这里的距离就是我们根据样本的特征所计算出来的数值,再找出距离未知类型样本最近的K个样本,即可预测样本类型。那么求距离其实不同情况适合不同的方法,我们这里采用欧式距离。
综上所述knn分类的关键点就是k的选取和距离的计算。
2. 实现
我的数据是一个xls文件,那么我去npm搜了一下选了一个叫node-xlrd的包直接拿来用。
// node.js用来读取xls文件的包
var xls = require('node-xlrd');
然后直接看文档实例即可,把数据解析后插入到自己的数据结构里。
var data = [];// 将文件中的数据映射到样本的属性var map = ['a','b','c','d','e','f','g','h','i','j','k'];// 读取文件
xls.open('data.xls', function(err,bk){
if(err) {console.log(err.name, err.message); return;}
var shtCount = bk.sheet.count;
for(var sIdx = 0; sIdx < shtCount; sIdx++ ){
var sht = bk.sheets[sIdx],
rCount = sht.row.count,
cCount = sht.column.count;
for(var rIdx = 0; rIdx < rCount; rIdx++){
var item = {};
for(var cIdx = 0; cIdx < cCount; cIdx++){
item[map[cIdx]] = sht.cell(rIdx,cIdx);
}
data.push(item);
}
}
// 等文件读取完毕后 执行测试
run();
});
然后定义一个构造函数Sample表示一个样本,这里是把刚生成的数据结构里的对象传入,生成一个新的样本。
// Sample表示一个样本
var Sample = function (object) {
// 把传过来的对象上的属性克隆到新创建的样本上
for (var key in object)
{
// 检验属性是否属于对象自身
if (object.hasOwnProperty(key)) {
this[key] = object[key];
}
}
}
再定义一个样本集的构造函数
// SampleSet管理所有样本 参数k表示KNN中的kvar SampleSet = function(k) {
this.samples = [];
this.k = k;
};
// 将样本加入样本数组
SampleSet.prototype.add = function(sample) {
this.samples.push(sample);
}
然后我们会在样本的原型上定义很多方法,这样每个样本都可以用这些方法。
// 计算样本间距离 采用欧式距离
Sample.prototype.measureDistances = function(a, b, c, d, e, f, g, h, i, j, k) {
for (var i in this.neighbors)
{
var neighbor = this.neighbors[i];
var a = neighbor.a - this.a;
var b = neighbor.b - this.b;
var c = neighbor.c - this.c;
var d = neighbor.d - this.d;
var e = neighbor.e - this.e;
var f = neighbor.f - this.f;
var g = neighbor.g - this.g;
var h = neighbor.h - this.h;
var i = neighbor.i - this.i;
var j = neighbor.j - this.j;
var k = neighbor.k - this.k;
// 计算欧式距离
neighbor.distance = Math.sqrt(a*a + b*b + c*c + d*d + e*e + f*f + g*g + h*h + i*i + j*j + k*k);
}
};
// 将邻居样本根据与预测样本间距离排序
Sample.prototype.sortByDistance = function() {
this.neighbors.sort(function (a, b) {
return a.distance - b.distance;
});
};
// 判断被预测样本类别
Sample.prototype.guessType = function(k) {
// 有两种类别 1和-1
var types = { '1': 0, '-1': 0 };
// 根据k值截取邻居里面前k个
for (var i in this.neighbors.slice(0, k))
{
var neighbor = this.neighbors[i];
types[neighbor.trueType] += 1;
}
// 判断邻居里哪个样本类型多
if(types['1']>types['-1']){
this.type = '1';
} else {
this.type = '-1';
}
}
注意到我这里的数据有a-k共11个属性,样本有1和-1两种类型,使用truetype和type来预测样本类型和对比判断是否分类成功。
最后是样本集的原型上定义一个方法,该方法可以在整个样本集里寻找未知类型的样本,并生成他们的邻居集,调用未知样本原型上的方法来计算邻居到它的距离,把所有邻居按距离排序,最后猜测类型。
// 构建总样本数组,包含未知类型样本
SampleSet.prototype.determineUnknown = function() {
for (var i in this.samples)
{
// 如果发现没有类型的样本
if ( ! this.samples[i].type)
{
// 初始化未知样本的邻居
this.samples[i].neighbors = [];
// 生成邻居集
for (var j in this.samples)
{
// 如果碰到未知样本 跳过
if ( ! this.samples[j].type)
continue;
this.samples[i].neighbors.push( new Sample(this.samples[j]) );
}
// 计算所有邻居与预测样本的距离
this.samples[i].measureDistances(this.a, this.b, this.c, this.d, this.e, this.f, this.g, this.h, this.k);
// 把所有邻居按距离排序
this.samples[i].sortByDistance();
// 猜测预测样本类型
this.samples[i].guessType(this.k);
}
}
};
最后分别计算10倍交叉验证和留一法交叉验证的精度。
留一法就是每次只留下一个样本做测试集,其它样本做训练集。
K倍交叉验证将所有样本分成K份,一般均分。取一份作为测试样本,剩余K-1份作为训练样本。这个过程重复K次,最后的平均测试结果可以衡量模型的性能。
k倍验证时定义了个方法先把数组打乱随机摆放。
// helper函数 将数组里的元素随机摆放
function ruffle(array) {
array.sort(function (a, b) {
return Math.random() - 0.5;
})
}
剩余测试代码好写,这里就不贴了。
测试结果为
用余弦距离等计算方式可能精度会更高。
3. 总结
knn算法非常简单,但却能在很多关键的地方发挥作用并且效果非常好。缺点就是进行分类时要扫描所有训练样本得到距离,训练集大的话会很慢。
可以用这个最简单的分类算法来入高大上的ML的门,会有点小小的成就感。
‘肆’ knn算法是什么
KNN(K- Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。
介绍
KNN算法本身简单有效,它是一种lazy-learning算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
‘伍’ K-近邻算法(KNN)
简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。
欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。公式如下:
身高、体重、鞋子尺码数据对应性别
导包,机器学习的算法KNN、数据鸢尾花
获取训练样本 datasets.load_iris()
画图研究前两个特征和分类之间的关系(二维散点图只能展示两个维度)
第二步预测数据:所预测的数据,自己创造,就是上面所显示图片的背景点
生成预测数据
对数据进行预测
ocr 光学字符识别(Optical Character Recognition) 我们先做一个基础班:识别数字
‘陆’ K-近邻算法简介
1.K-近邻(KNearestNeighbor,KNN)算法简介 :对于一个未知的样本,我们可以根据离它最近的k个样本的类别来判断它的类别。
以下图为例,对于一个未知样本绿色小圆,我们可以选取离它最近的3的样本,其中包含了2个红色三角形,1个蓝色正方形,那么我们可以判断绿色小圆属于红色三角形这一类。
我们也可以选取离它最近的5个样本,其中包含了3个蓝色正方形,2个红色三角形,那么我们可以判断绿色小圆属于蓝色正方形这一类。
3.API文档
下面我们来对KNN算法中的参数项做一个解释说明:
'n_neighbors':选取的参考对象的个数(邻居个数),默认值为5,也可以自己指定数值,但不是n_neighbors的值越大分类效果越好,最佳值需要我们做一个验证。
'weights': 距离的权重参数,默认uniform。
'uniform': 均匀的权重,所有的点在每一个类别中的权重是一样的。简单的说,就是每个点的重要性都是一样的。
'distance':权重与距离的倒数成正比,距离近的点重要性更高,对于结果的影响也更大。
'algorithm':运算方法,默认auto。
'auto':根绝模型fit的数据自动选择最合适的运算方法。
'ball_tree':树模型算法BallTree
'kd_tree':树模型算法KDTree
'brute':暴力算法
'leaf_size':叶子的尺寸,默认30。只有当algorithm = 'ball_tree' or 'kd_tree',这个参数需要设定。
'p':闵可斯基距离,当p = 1时,选择曼哈顿距离;当p = 2时,选择欧式距离。
n_jobs:使用计算机处理器数目,默认为1。当n=-1时,使用所有的处理器进行运算。
4.应用案例演示
下面以Sklearn库中自带的数据集--手写数字识别数据集为例,来测试下kNN算法。上一章,我们简单的介绍了机器学习的一般步骤:加载数据集 - 训练模型 - 结果预测 - 保存模型。这一章我们还是按照这个步骤来执行。
[手写数字识别数据集] https://scikit-learn.org/stable/moles/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
5.模型的方法
每一种模型都有一些它独有的属性方法(模型的技能,能做些什么事),下面我们来了解下knn算法常用的的属性方法。
6.knn算法的优缺点
优点:
简单,效果还不错,适合多分类问题
缺点:
效率低(因为要计算预测样本距离每个样本点的距离,然后排序),效率会随着样本量的增加而降低。