① 有人说,人工智能将来可替代程序员写代码,你怎么看
你好!我是康哥! 未来不光是人工智能会取代程序员写代码,我认为很多行业都有可能被取代!
作为80后的我小时候没有电脑,父母那一辈基本上班的时候也都没接触过电脑,那个时候工作文稿都是用手写,而到我上了大学,短短18年的时间电脑在中国得到了普及。让我印象最深的是我参加工作的时候公司的老会计,业务能力不在话下,但是金蝶用友玩的不转。后来也不得不顺应时代的发展,学习电脑知识。
所以人工智能现在看似是一个很新兴的产业,但是很可能在未来的十几年当中渗入我们生活中的方方面面。
那些重复性的工作,例如人力资源中的考勤工资;财务中的基础做账工作;程序员中的基础代码工作;甚至医院的医生都会被人工智能取代 。
未来不会被渠道的是一些重复性工作不强的职位,我认为这个实际上就是效率的提升,电脑代替手工劳动,机器代替人的大脑和手脚,让我们的生活更加有效率。
我认为是一件好事情,能让我们有更多的时间去开发新事物。不断地开发我们的大脑去 探索 新事物。
但是从另外一个方面来看,未来的确有很多人会失业。不管是现在我们常见的一些岗位,包括一些看似稳定的铁饭碗,例如公务员或者事业单位人员,一些职能性的但是效率底下的职位也将会被取代。
这就提醒我们每个人都要居安思危,不断提升自己的技能和附加值,这样才不会被 社会 所淘汰,二十年时间看似很长,但是实际很短。
AI能代替我们的是一些能够重复的工作和简单的开发工作,可是谁来维护这些人工智能,如何管理这些人工智能我认为未来是我们人类职位的一个新增项。
作为一名IT行业的从业者,同时也是一名计算机专业的教育工作者,我来回答一下这个问题。
首先,随着人工智能技术的不断发展,未来大量基础的编码工作必然会由智能体来完成,这个过程也会不断推动程序员的岗位升级,提升程序员的岗位附加值,同时减轻程序员的工作压力。实际上,人工智能技术的发展对于未来延长程序员的职业生命周期具有重要的意义。
当前程序员岗位的工作压力还是比较大的,不仅应用级程序员每天需要完成大量的编码工作,研发级程序员也需要面对一些毫无能力提升的编码工作,这在很大程度上降低了程序开发的乐趣,使得程序员感到乏味。随着当前产品迭代的速度不断加快(大数据时代的并行迭代),程序员不仅面临更大的工作量,在工作内容上也得到了一定的拓展(全栈开发趋势),所以当前从事程序员岗位还是具有一定难度的。
要想让程序员从当前的工作压力当中解放出来,采用智能体实现代码编写是非常重要的一个解决方案,这不仅会提升程序开发的效率,同时也会保障程序代码的质量一致性,提升程序的稳定性。实际上,当前在程序开发领域内已经有不少工具可以完成一部分代码的生成工作,虽然目前功能还不够强大,但是已经在一定程度上减轻了程序员的编码负担。
未来当智能体替代程序员完成基本的编码工作之后,程序员可以把更多的精力应用在创新方面(算法设计、模式设计、框架设计等),而且技术验证的速度也会明显提升,这些都会提升程序员的工作效率。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
有人说,人工智能将来可替代程序猿写代码,你怎么看?
好!
科技 这么发达,
完全有可能,
但是,
怎么发达,
有一些程序还是离不开人的操作,
程序猿,
有些程序必须靠人工才能完,
这个毋庸置疑,
不论智能怎么发达,
有些人的操作,
永远取代不了的,
这个倒是真的,
有一些事物,
是人工智能无法完成的,
到任何时候人,
都不会被智能取代消退,
总有一些程序交给人,
来操作!
都是些不深入ai的媒体炒作概念,让人觉得ai无所不能。一百二十八年内不可能,有的话也是小打小闹,满足不了工业届千变万化的需求。ai可以辅助创作,但独立创作,尤其是代码,绝无可能。
如果ai将来能写可执行的逻辑正确的代码,那么未来的程序员或算法工程师,都会大部分失业。如果ai都能按逻辑写代码,都可以去尝试各种逻辑,甚至自己决策。那么ai可以控制各种带有芯片的设备,小到手机,大到 汽车 。这还是ai么,这不是上帝之子么。
可能你从github喂海量的代码给到模型,借助于大数据和gpu算力出来,理论上来说能训练出一个号称能写代码的ai.但这个ai写出的代码都是基于统计规律的,不能处理突发事故。运气好的话,生成的代码能执行,但代码越长,生成的代码可运行的概率越低。
即使能运行,代码的逻辑是什么?
程序员和产品经理干架,就是因为需求会一直变。你期望ai能写出满足千变万化的需求的代码?
我们从几十亿年的单细胞生物进化到今天,能不能有点自信?要是ai这么厉害,我觉得我没脸说我是人了。总之,怎么可能!
将来我们写代码时:
总之,ai可以辅助程序员编程,极大提高编程效率。但如果代替程序员自己编程,根本不可能。如果有那一天,我把我现在的手机吃了。
这几年,人工智能被炒的越来越热了,比如阿里的鲁班系统能够自动生成双十一海报,一天可能出图上亿张;还有通过机器学习,程序画的话,被卖到上亿元;其实就目前来讲,这些都是比较基础的,人工智能即使画画,也是通过机器学习别人的画之后,说白了, 组合的。没有灵魂作为支撑的产品,不能说没有价值,但是在意义层面来讲绝对是非常弱的。
人工智能在将来可以替代程序员写代码吗?我只能说:有可能,而且即使人工智能代替程序员写代码,也是比较基础的,其实,随着现在程序工具化的趋势,已经解放了程序员,如果人工智能+工具化,在一些基础的,机械的编程中,确实能够让程序员解放出来,去处理更加复杂的业务逻辑和架构设计。
但是,我感觉人工智能完全取代程序员是不可能的。因为,机器永远也不想到人类复杂的需求,尤其是,变来变去的需求变化。如果机器能够有灵魂的话,估计也会被人类复杂且变来变去的需求,折磨的要死,从而发出一句,感叹:卧槽,这是什么玩意的破需求。
但是,去年有一条新闻值得我们关注,那就是:
Repairnator 是由 KTH 瑞典皇家理工学院的软件技术教授 Martin Monperrus 开发。它会监控开源软件在持续集成期间发现的 bug,并尝试自动修复它们。如果它成功合成了一个有效的补丁,那么 Repairnator 会伪装成人类身份向人类开发者提交此补丁。到目前为止,Repairnator 已经成功生成了 5 个补丁,并被人类开发者永久地合并到代码库中。
这是自动程序修复软件工程研究中新的里程碑。
所以,现在机器都可以修改 bug 了,将来在一定程度上写程序,也是有可能的,但是完全取代我认为不现实。
原因如下:
当然了,如果机器能够完全取代人类编程的话,那非常可怕啊,未来有可能将是被机器控制的时代,而不是人类控制机器的时代。
有人说,人工智能将来可以取代程序员来写代码,这个理由不成立,因为人工智能就是程序员开发出来的。而且现在所谓的人工智能远远没有达到真正意义上的智能,大部分还是人工更多一点。
如果以人类的生命成长阶段来看,人工智能目前只能算是婴儿阶段,在婴儿阶段就抛弃喂养自己的母亲程序员,那为时也太早了。
人工智能大体分两个大的方向,图像识别和机器学习。目前图像识别成长的比机器学习更快一点,但也仅限于快一点儿,我们常见的图像识别场景就是无人驾驶。而机器学习发展相对缓慢,都是在初级阶段,如果想要有阶段性的变化,在算法机制上要有突破性的进步,才能引领机器学习进入下一阶段。
所以至少在未来几十年甚至上百年我认为我们程序员都不会失业的,还是有饭吃的。
所谓人工智能的程序也是由人类开发设定的,它也绝不会取代人的作用,它对美学,结构想象力设计,逻辑多向思维甚至悬思学都无法深入涉足,它就像一个架构师将算法和公式公布出来,其它基础部分由代码来完成一样,就算将来人工智能也可以进行相关研发,但审核与检测仍然需要人类完成,人类的工作只会越来越高级。
所以不用杞人忧天,人工智能是不可能真正成为人类的思维一部分的,当它的工作目标对人类无意义而虚耗电能和时间的时候,人类是一定会及早发现并介入的,一个简单的拔电源就可以停止其行为……
人工智能是近阶段大家经常提到的一个话题,其中神经网络深度学习其中一个特点,那么人工智能最终真的能达到一般人类这样去思维么?能够像程序员那样的编程么?会不会以后有一天真的能替代程序员了吧,这件事情你是怎么看待的?针对这事情我来说一下我的看法。
人工智能会让程序员的工作效率更高,十年之内不可能完全代替程序员
在CSDN上有一篇报道,有一个名字为Screenshot-to-code-in-Keras的项目可以把一些稿件自动变成一堆html代码加css代码,有的前端程序员就可能为此而感觉到恐慌,感觉以后人工智能要替代自己的饭碗了,这样的事情也不足为奇,在人工智能这个概念还没有兴起之前,一些java程序员使用ide开发工具就能生成一堆代码,节省了开发效率。感觉起码在近五到十年内感觉人工智能还不能完全替代人类程序员这样去编程,就以前端代码为例,虽然html代码加效果类css让人工智能生成代码,可能人工智能在这方面战术上完胜,但是一些战略问题它还是远远不及人类的。
其一它生成的东西能确保是人类想要的吗?,如果不符合要求是不是需要人类程序员来调整,人工智能不可能做出一套适应所有场景的东西出来。
其二前端程序员是要与后端程序员进行对接的,在对接时各个参数,怎么调用了,相当复杂,两个人类程序员(前端程序员与后端程序员)还需要沟通好长时间,难道人工智能就能那么完美理解人类的意思就不需要沟通了么?
近5到10年内的情况可能是这样的,一些低级的常规的代码都可能会是自动生成,一些组织调整的工作交给人类程序员来进行处理,最后项目的质量当然还是有人类进行负责的,由人工智能的加持,程序员的工作效率可能会大大提高,以往传统开发需要几周的工作量可能会缩减到几天甚至更短。
未来上层领域的程序员数量会减少
随着时间再往后发展,我想一些上层代码会逐渐由人工智能程序自己完成了,可能写代码的不再是程序员了,比如说可能是一种操作软件的形式存在,有着成熟的操作界面,良好的操作体验,一个非技术人员通过界面输入自己想要的东西,通过一定的规则描述,然后就会生成相应的代码并能直接运行。或者比这个更先进,不是一个软件界面的形式存在,而是一个智能硬件设备,只需要对其说话,像与人类说话那样,说出自己的需求,智能设备就能在短时间内做出自己想要的东西。
如果真能达到这种程度的话,我想未来参与业务开发的程序员的数量将会急剧减少,但是 不可能减少到为0,因为人工智能做出的东西也不可能是完全有保证的,起码需要个别人还需要进行对项目代码进行负责不是嘛,就想现在的无人驾驶车为啥还留有方向盘一样。上层开发的人员少了,人工智能这些底层开发的程序员会更吃香了,甚至数量会多起来。
软件数量和规模将成倍增长
大家都知道程序做事效率是相对高的,人类做项目是用天,周,年为单位来计算的,那么这些软件交给人工智能处理应该是秒级别的吧,如果是大一点的项目顶多是分钟了。如果是这样的话,估计人类世界软件的发展速度将会达到一个新的高度,软件的数量和规模将是几何倍数的增长。
如果真是这样一天的到来,我想人类在学习和思想上都要有策略上的改变,以前经常在嘴边说的话,要勤奋,要多动手,未来的人类要做的事情,就是要多思考,勤于思考。动手的事情就交给人工智能去吧。
那是必然的。不仅程序,看病,甚至很多方面都可以,但是,那种机械的,生冷的东西在几何级数提高效率的同时也会铸成,无论如何,这个趋势不可阻挡,是喜是忧?需要盖棺定论。
电脑只能处理精确到指令,需求一开始往往是很模糊的,以目前人工智能自然语言语义理解的发展程度,可能性很低。
② AI该怎么学习
1.对于精通PS的设计师来说,AI有很多相似之处,学起来更加容易,如果PS不熟练,可以先买本书阅读下基本的理论知识,了解AI的界面和工具选项栏的作用。推荐电子书和纸质书。
2.大概熟悉之后,在电脑要安装AI软件,打开软件,进行最基本的操作,所谓熟能生巧,多练多看,达到很熟悉的程度。
3.学会使用快捷键,也可以自己设置快捷方式,快捷键可以帮助我们提高工作效率,还有就是掌握一些操作技巧,这些能够提高我们的速度和更加理解工具的应用。
4.简单模仿,看一些简单的素材文件,开始模仿其操作,想象一下要怎么实现操作,应用了哪些工具。
5.自己定义目标,根据创作理念,开始发挥创作性思维,用学到的知识填补画面,设计一副完整的作品。
6.最重要的还是要多看大师们的作品,领悟其精髓,化为已用,多看多思考,形成自己的设计风格。
③ 如何自学人工智能
数学知识
我想在大多数学校里,数学都是理工科学生的必修课,微积分、线性代数、概率论与数理统计,这些都比较基础实用,我觉得这个数学基础对入门人工智能足够了,人工智能应用数学最多的也就是求导、矩阵的运算和分解、概率的统计与分析。
编程能力
工欲善其事、必先利其器,人工智能方向编程语言使用最多的应该就是Python了,在很多学校理工科学生应该都会必修一门编程课,有的是C,有的是C++,就算这些都没用过,也应该对Matlab了解一些,我觉得有一些编程基础入门Python算是比较简单的,网上资源很多,社区支持也很强大。
机器学习
我这里所说的机器学习是广义上的机器学习,涵盖深度学习。无论是做传统的机器学习回归和分类,还是做深度学习,无论是做计算机视觉,还是做自然语言处理,都离不开机器学习,后面我会介绍一些我认为比较好的学习资源,对于机器学习,我划分为两个方面:(1) 框架层面;(2) 理论层面。
④ 程序员们说说看:TensorFlow到底难不难学
强化学习的进展速度远远低于深度学习。 虽然OpenAI Five和谷歌的AlphaGo等有值得注意的新闻突破,但实际情况下的强化学习实践并未发生。
正如谷歌AI的团队皮首在这篇博文中提到的那样,开发这类算法需要大量的实验而没有任何明确的方向。 不幸的是,大多数现有的框架都没有这种灵活性。 如果你在这个领域工作或研究过,你就知道重现现有方法有多困难(如果不是不可能的话)。
因此,为了帮助加速研究,并希望让社区更多地参与强化学习,Google AI团队开放了一个名为Dopamine的TensorFlow框架,旨在通过使其更灵活和可重复性来创建研究。 根据团队的官方文档,他燃搏数们的设计原则是:
简单的实验:帮助新用户运行基准实验
灵活的开发:为新用户提供新的创新想法
紧凑和可靠:为一些较旧和更流行的算法提供实现
可重复:确保结果可重复
意识到新人们根据基准检查结果的重要性,研银拍究人员还发布了整个培训数据。 它可用作Python pickle文件,JSON文件和用户可以可视化每个训练迭代的网站。
我们对此有所了解
请注意,DeepMind对多巴胺的研究与Google AI的这项工作无关。 虽然两者都在很大程度上植根于强化学习,但Google AI通过公开采购的方式参与了整个社区。 它肯定有助于它以TensorFlow为基础,这是深度学习社区中每个人都熟悉的框架。
强化学习可能是一个令人生畏的主题,但我鼓励大家尝试一下。 这个领域仍然具有潜力,并将在未来几年取得很大进展。 这是一个很好的入门资源,您也可以参考我们的文章了解初学者。
如果你想更加了解TensorFlow,或者说想实践一下人工智能项目,谷歌的另一款工具或许可以帮到你,也就是谷歌的AIY Projects 项目。
在2017 年上半年,谷歌宣布了一个新的开源计划--AIY Projects(AIY计划),其目标是让每个Maker(创客)都能DIY自己的 AI 人工智能产品,让更多人能学习、探索并体验人工智能。 AIY 全称是 Artificial Intelligence Yourself ,顾名思义就是利用 AI 来进行的 DIY 功能套件。借助 AIY 项目,创客可以利用人工智能来实现更像人与人交流的人机交互。谷歌目前为 AIY Projects 推出了两款硬件产品--AIY Voice Kit 和 AIY Vision Kit。
AIY Vision Kit(视觉套件)是一套简单的计算机视觉系统,可运行 3 种基于 TensorFlow 的类神经网路模型应用程序。
这次 AIY 计划推出两款新品,Edge TPU 是谷歌专用的 ASIC 芯片,专为在 Edge 运行 TensorFlow Lite ML 模型而设计, 用来处理 AI 预测部分。它的特点是比训练模型的计算强度要小。而且 Edge TPU 还可以自己运行计算,不需要与多台强大计算机相连,因此应用程序可以更快、更可靠地工作。它们可以在传感器或网关设备中与标准芯片或微控制器共同处理 AI 工作。 针对Edge TPU的新设备是:AIY Edge TPU Dev 开发板和 AIY Edge TPU 加速器,二者皆采用 Google 的 Edge TPU 芯片。
⑤ ai学习的原理
Q: ai学习的原理 : AI学习的原理是铅搏模仿人类的学习过程,通过大量的数据和算法训练来提高自身的学习能力和预测能力。具体来说,AI学习可以分为监督学习、无监督学习和强化学习三种方式。
监督学习是通过给算法提供已知的输入和输出数据,让算法自动学习输入和输出之间的关系。比如,让算法学习识别图像中的物体或者预测股票价格等。
无监督学习则是不提供输出数据,让算法自行发现数据之间的规律和特征。比如,让算法自动分析一组数据的分类和聚类等。
强化学习则是通过试错来学习,在每个步骤中,算法衫基会根据当前状态和之前的经验来选择一个行动,然后根据行动的结果来调整策略,以获得更好的结果。比如,让算或激谨法学习下棋或者玩游戏等。
总的来说,AI学习的本质是通过大量的数据和算法训练来提高自身的学习能力和预测能力,从而实现人工智能的应用。
⑥ 【社区空间站】(第13期)人工智能自动走八卦迷宫图,你不来看看吗
虽然八卦迷宫在中国古代战场上应用极其广泛,但后来随着时间的发展,八卦阵迷宫逐渐退出军事舞台。然而,迷宫平面图在其他领域依然存在。不管是数学,还是心理学等方面都有其研究点。很多时候,我们也将迷悄辩宫视为展现自己智力的一点。
随着科技的发展,人工智能也可以自动走迷宫,那你有没有兴趣探索AI走迷宫是如何实现以及真正的应用效果是什么样的呢?来我们的社区空间站,跟随江岸清老师,看不一样的世界。
课程简介
活动时间:4月25日19:00-21:00
主题:AI自动走迷宫
讲师:江岸青
活动单位:浦东嘉里城
活动地址:渗蠢芳甸路1155号嘉里城4层
内容
1. AI强化学习简介
2. 安装强化学习开发环境
3. 强化学习构架介绍
4. 自己动手建立第一个AI自动走迷宫程序
老师
江岸青,早稻田大学博士,2017年加入日本人工智能公司Datasection进行有关图像处理领域研究并帮助多个日本公司进行人工智能项目的落地,后在复旦大学进行合作研究。在图像识别/目标检测/光流等CV领域方面有丰富的开发经验,现主要进行人工智能在材料和光学元器件设计的横向科研项目。
组织者
我们是荣隆教育,坐落于上海。目前从事Linux系统运维、AI人工智能方面的教育。我们的目标是为全世启喊缺界提供世界级的IT教育, 我们随时欢迎所有想要学习Linux系统运维、AI, 以及想要用学到的IT知识改变世界的人们加入我们, 我们的社区遍布世界各地。
如果您想要学习Linux系统运维、AI,或者您是该领域的专家, 并且想把您所学到的只是分享给大家, 或者认识同行,可以加入我们。
⑦ 普通程序员如何向人工智能方向转型
当下,人工智能已经成为越来越火的一个方向。普通程序员,如何转向人工智能方向,是知乎上的一个问题。
这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。
这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。
如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。
无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。
下面是关于每个阶段的具体介绍:
0.领域了解
在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,可以看我写的博客从机器学习谈起。
1.知识准备
如果你离校过久,或者觉得基础不牢,最好事先做一下准备复习工作。“工欲善其事,必先利其器”。以下的准备工作不多,但足以应付后面阶段的学习。
数学:复习以下基本知识。线性代数:矩阵乘法;高数:求导;概率论:条件与后验概率。其他的一些知识可以在后面的学习的过程中按需再补;
英文:常备一个在线英文词典,例如爱词霸,能够不吃力的看一些英文的资料网页;
FQ:可以随时随地上Google,这是一个很重要的工具。不是说网络查的不能看,而是很多情况下Google搜出来的资料比网络搜的几十页的资料还管用,尤其是在查英文关键字时。节省时间可是很重要的学习效率提升;
2.机器学习
机器学习的第一门课程首推Andrew Ng的机器学习。这门课程有以下特点:难度适中,同时有足够的实战例子,非常适合第一次学习的人。cs229这门课程我这里不推荐,为什么,原因有以下:
时间:cs229的时间太早,一些知识已经跟不上当今的发展,目前最为火热的神经网络一笔带过。而Cousera上神经网络可是用了两个课时去讲的!而且非常详细;教学:Ng在cs229时候的教学稍显青涩,可能是面对网络教学的原因。有很多问题其实他都没有讲清楚,而且下面的人的提问其实也很烦躁,你往往不关心那些人的问题。这点在Coursera上就明显得到了改善,你会发现Ng的教学水平大幅度改善了,他会对你循循善诱,推心置腹,由浅入深的教学,在碰到你不明白的单词术语时也会叫你不要担心,更重要的,推导与图表不要太完善,非常细致清晰,这点真是强力推荐;字幕:cs229的字幕质量比Coursera上的差了一截。Coursera上中文字幕翻译经过了多人把关,质量很有保证;作业:cs229没有作业,虽然你可以做一些,但不会有人看。这点远不如Coursera上每周有deadline的那种作业,而且每期作业提交上去都有打分。更重要的是,每期作业都有实际的例子,让你手把手练习,而且能看到自己的成果,成就感满满!
3.实践做项目
学习完了基础课程,你对机器学习就有了初步了解。现在使用它们是没有问题的,你可以把机器学习算法当作黑盒子,放进去数据,就会有结果。在实战中你更需要去关心如何获取数据,以及怎么调参等。如果有时间,自己动手做一个简单的实践项目是最好的。
这里需要选择一个应用方向,是图像(计算机视觉),音频(语音识别),还是文本(自然语言处理)。这里推荐选择图像领域,这里面的开源项目较多,入门也较简单,可以使用OpenCV做开发,里面已经实现好了神经网络,SVM等机器学习算法。项目做好后,可以开源到到 Github 上面,然后不断完善它。实战项目做完后,你可以继续进一步深入学习,这时候有两个选择,深度学习和继续机器学习;
4.深度学习
深度学习:深度学习是目前最火热的研究方向。有以下特点:知识更新快,较为零碎,没有系统讲解的书。因此学习的资源也相对零散,下面是一些资源介绍。其中不推荐的部分并不代表不好,而是在这个初学阶段不合适:
推荐,UFLDL:非常好的DL基础教程,也是Andrew Ng写的。有很详尽的推导,有翻译,且翻译质量很高;推荐,Deep learning (paper):2015年Nature上的论文,由三位深度学习界的大牛所写,读完全篇论文,给人高屋建瓴,一览众山小的感觉,强烈推荐。如果只能读一篇论文了解深度学习,我推荐此篇。这篇论文有同名的中文翻译;推荐,Neural networks and deep learning:这本书的作者非常擅长以浅显的语言表达深刻的道理,虽然没有翻译,但是阅读并不困难;推荐,Recurrent Neural Networks:结合一个实际案例告诉你RNN是什么,整篇教程学完以后,会让你对RNN如何产生作用的有很清晰的认识,而这个效果,甚至是读几篇相关论文所没有的;不推荐,Neural Networks for Machine Learning University of Toronto Coursera:深度学习创始人教的课,最大的问题是太难,而且老先生的吐字有时不是很标准;不推荐,Deep Learning (book):同样也是由深度学习大牛所写的书,但感觉就像是第二作者,也就是他的学生所写的。很多内容都讲了,但是感觉也没讲出什么内容来,只是告诉你来自那篇论文,这样的话可能直接阅读论文更合适。不推荐,cs231n:李菲菲的课程,很有名,专门讲CNN。但是这门课程有一个最大的问题,就是没有字幕,虽然有youtube的自动翻译字幕,但有还不如没有。
5.继续机器学习
深度学习未必就是未来的一定主流,至少一些大牛是这么认为的。传统的机器学习有如下特点,知识系统化,有相对经典的书。其中统计学习(代表SVM)与集成学习(代表adaboost)是在实践中使用非常多的技术。下面是相关资源:
推荐,机器学习(周志华):如果是在以前,机器学习方面的经典教材首推PRML,但现在周老师的书出来以后,就不再是这样了。首先推荐读周老师的书。这本书有一个特点,那就是再难的道理也能用浅显精炼的语言表达出来。正如周老师的名言:“体现你水平的地方是把难的东西讲容易了,而不是把容易的东西讲难,想把一个东西讲难实在太简单”;
不推荐,Pattern Recognition And Machine Learning:当前阶段不推荐。PRML是以贝叶斯的观点看待很多机器学习方法,这也是它的一大特色。但对于初学者来说,这种观点其实并无必要。而且此书没有中文翻译,当前阶段硬啃很容易放弃;
6.开源项目
当知识储备较为充足时,学习可以再次转入实践阶段。这时候的实践仍然可以分两步走,学习经典的开源项目或者发表高质量的论文。开源项目的学习应该以尽量以优化为目的,单纯为读代码而学习效果往往不太好。好的开源项目都可以在Github 里搜索。这里以深度学习为例。深度学习的开源优秀库有很多,例如torch,theano等等,这里列举其中的两个:
推荐,DeepLearnToolbox:较早的一个深度学习库,用matlab语言撰写,较为适合从刚学习的课程转入学习。遗憾的是作者不再维护它了;
推荐,tensorflow:Google的开源库,时至今日,已经有40000多个star,非常惊人,支持移动设备;
7.会议论文
较好的课程都会推荐你一些论文。一些着名的技术与方法往往诞生于一些重要的会议。因此,看往年的会议论文是深入学习的方法。在这时,一些论文中的内容会驱使你学习数学中你不擅长的部分。有时候你会觉得数学知识储备不够,因此往往需要学习一些辅助课程。
当你看完足够的论文以后,在这个阶段,如果是在校学生,可以选择某个课题,以发论文为目的来学习研究。一般来说,论文是工作的产物。有时候一篇基于实验的论文往往需要你写代码或者基于开源项目。因此开源项目的学习与会议论文的工作两者之间是有相关的。
两者可以同时进行学习。关于在哪里看论文,可以看一下CCF推荐排名,了解一下这个领域里有哪些优秀的会议。
下面介绍两个图像与机器学习领域的着名顶级会议:
CVPR:与另两个会议ICCV和ECCV合称计算机视觉领域的三大会,注意会议每年的主页是变动的,因此搜索需要加上年份;Conference on Neural Information Processing Systems:简称NIPS,许多重要的工作发表在这上面,例如关于CNN的一篇重要论文就是发表在上面;
8.自由学习
到这里了,可以说是进入这个门了。下面可以依据兴趣来自由学习。前阶段不推荐的学习资源也可随意学习,下面是点评:
cs229:Ng写的讲义很不错,其中关于SVM的推导部分很清晰,想学习SVM推荐;Neural Networks for Machine Learning:大牛的视角跟人就是不一样,看看Hinton对神经网络是怎么看的,往往会让你有种原来如此的感悟。其实看这门课程也等同于读论文,因为几乎每节课的参考资料里都有论文要你读;CS231n: Convolutional Neural Networks for Visual Recognition:最新的知识,还有详细的作业。国内应该有团队对字幕进行了翻译,可以找找;PRML:作为一门经典的机器学习书籍,是很有阅读必要的,会让你对机器学习拥有一个其他的观察视角;
五.总结
本文的目的是帮助对AI领域了解不深,但又想进入的同学踏入这个门。这里只说踏入,是因为这个领域的专精实在非常困难,需要数年的积累与努力。在进行领域学习前,充分认识自己的特点,制定合适的学习方法是十分重要的。
首先得对这个领域进行充分了解,培养兴趣。在学习时,保持着循序渐进的学习方针,不要猛进的学习过难资源;结合着学习与实践相辅的策略,不要只读只看,实际动手才有成就感。学习某个资源时要有充分的目的,不是为了学开源项目而看代码,而是为了写开源项目而看;不是为了发论文而写论文,而是为了做事情而写论文。
本文来自公众号:“大技术技术汇”,guanzhu了解大数据行业学习大数据技术和学习路线,还有免费学习资料放送。
如果一个学习资源对你过难,并不代表一定是你的问题,可能是学习资源的演讲或撰写人的问题。能把难的问题讲简单的人才是真正有水平的人。所以,一定要学习优质资源,而不是不分青红皂白的学习。最后,牢记以兴趣来学习。学习的时间很长,过程也很艰难,而只有兴趣才是让你持之以恒,攻克难关的最佳助力。
⑧ 我的世界钻石挑战,让人工智能AI来挖钻石,程序员表示我该怎么办
对于大多数新的Minecraft玩家来说,花几分钟的时间才能弄清楚如何挖掘出 游戏 中至关重要的钻石,但是事实证明,培训人工智能技术来完成这项工作比预期的要困难。
19年整个夏天,Minecraft的发行商其他组织都向程序员发起钻石挑战,要求他们编写可以找到令人垂涎的钻石的AI程序。
大多数新手可以在第一次 游戏 中就可以挖到钻石。
但是在提交的660多个程序代码中,没有一个可以完成任务。
目前的目标是是否可以在不需要大量计算能力的情况下解决该问题。
一位组织者表示,她对某个程序员的代码“印象深刻”。参赛者可以使用记录的人类 游戏 库,展示如何导航 游戏 ,获卜游弯取 游戏 中的物品并避免“死亡”。
微软研究院首席研究员卡特娅·霍夫曼说:“我们提出的任务非常艰巨。” “在Minecraft中查找钻石需要许多步骤-从砍伐树木到制作工具,再到 探索 洞穴并实际找到钻石。
“虽然没有提交的代码完全解决任务,但他们已经取得了很大的进步,并学会了制作此过程中所需的许多工具。”
自2011年发布以来,《我的世界》就已经大受欢迎。
这款开放世界 游戏 的销量已超过1.8亿册,每月活跃玩家超过1.12亿。
钻石是Minecraft中最重要的资源之一,因为它可以用来制造强大的装甲和强大的武器。
然而,为了获得钻石,玩家必须首先完成许多其他步骤。
Minecraft玩家朱尔斯·波特利(Jules Portelly)告诉英国广播公司,“如果您熟悉这款 游戏 ,则不需要花费超过20分钟即可获得第一枚钻石。”
参赛者只能使用一个图形处理单元(GPU)和四天的培训时间。就上下文而言,人工智能系统通常需要数月或数年的 游戏 时间才能掌握《星际争霸2》之类的 游戏 。
参赛者还可以使用一个相对较小的Minecraft数据集,其中记录了6000万帧人类玩家数据,以让他们的系统进行学习。参与者必须提交其源代码磨悉,以便组织者可以对其进行验证
霍夫曼博士解释说:“每集开始时,它们都是在程序生成的Minecraft世界中产生的。”
“因此,他们确实需要学习寻找资源,制造工具和寻找钻石的概念。”
组织者希望程序员通过称为“模仿学习”的技术来创建通过示例学习的程序。
这涉及通过让AI代理模仿人类或其他软件解决任务的方式来尝试使AI代理采用最佳方法。
这与单纯依靠“强化学习”形成了鲜明对比。在“强化学习”中,一个智能体被有效地训练,通过反复试验找到最佳解决方案,而不需要利用过去的知识。
研究人员发现,单独使用强化学习有时可以获得更好的结果。
例如,DeepMind的阿尔法狗程序击败了该研究中心此前的一项努力,即利用强化学习和对人类 游戏 中的标记数据的研究来学习围棋。
但是这种“纯粹的”方法通常需要更多的计算能力,这使得它对于大型组织或政府之外的研究人员来说太昂贵了。
主要竞赛组织者、卡内基梅隆大学(Carnegie Mellon University)博士生威廉•古斯(William Guss)向英国广播公司(BBC)表示,竞赛的目的在于表明,“对我们来说,将大规模计算用于解决问题,未必是推动这一领域发展的正确方式型闷”。
他补充道:“它直接阻碍了对这些强化学习系统的民主化访问,并将在复杂环境中培训代理人的能力留给了拥有大量计算能力的企业。”
但这一结果可能有助于突显这些资金充足的实体所具有的优势。
⑨ 作为一名程序员,应该如何看待AI
程序员以及其他类型的IT工作无疑是当前最热门的工作。然而,这种趋势可能不会一直持续下去。人工智能的发展可能会打破这一格局。
美国橡树岭国家实验室的一些专家预测,到2040年,AI技术将会强大到足以替代程序员,AI编写软件将比人类程序员更好、更快。换句话说,软件编写的软件比人类编写的更好。
但不会完全替代。在不久的将来,AI和人类程序员将在编程中扮演互补的角色。AI的工作可能是处理重复性的、耗时的任务,这些任务需要机器优异的精确性。机器可以避免由于人为因素而产生的语法错误或设计错误。例如,AI可以提供帮助的一种方式是自动完成功能,程序员只编写一小部分代码,然后AI识别程序员的意图,并完成剩下的代码,从而为人类节省大量的工作。
希望可以帮到你,谢谢!