⑴ 程序员在意大利一年大概多少钱
原价1+1年大概能赚个三400,000左右吧,不同的城市价格不一样。
⑵ 世界上第一个程序员 编写了首款电脑程序推动计算机发展
英国Ada Lovelace 是世界上第一个程序员,在那个计算机非常不发达,并且也没有任何概念的时候,她首次编写了程序,同时使用了循环和子程序的概念。她编写了世界上首款电脑程序,这对于推动世界计算机的发展有着非常重要的作用。
一、阿达对于计算机历史的影响
在最初时,人们对于计算机的认识并不全面,所以对于阿达的成就并没有表示太大的认可,而在1953时,也就是阿达去世后100年时,阿达之前的计算公式和算法被公布之后,引起来许多的热议,同时也是肯定了阿达对于现代计算机中的研发,和在软件工程制造方面产生的非常大的影响。
而在现在许多人使用的微软之中,也有着阿达的全息图标,同时英国官方计算机也会每年以阿达的名字命名颁发一个奖项。在1980时期,美国的国防部制造出最新的高级计算机语言,并且用阿达的名字来命名,以表示她的重要性。现在世界上最复杂最完备的工具,就是阿达所提出的算法和程序所写出来的。
二、阿达的成就
阿达不仅是计算机程序的鼻祖,同时也是一个数学家。根据记载,她从小就对于数学非常感兴趣,她仅仅只用了9个月的时间,就将意大利着名数学家编着的计算机设计书概念书进行了全面的额翻译,而翻译之后的运算方式就是世界上的第一个电脑软件工程。阿达在非常早之前就语言到在未来,机械电脑会有着更加复杂的用途,而现实已经将她的预言证明。
阿达在许多着名的着作家之中的书中也有着非常大的名气,在《差分解析仪》之中,阿达是这本书的主角,而在这本书中讲述了阿达对于计算机所作出的贡献,和对于未来计算机发展的预判。
⑶ 2048的游戏规则是什么
2048游戏共有16个格子,初始时初始数字由2或者4构成。
1、手指向一个方向滑动,所有格子会向那个方向运动。
2、相同数字的两个格子,相撞时数字会相加。
3、每次滑动时,空白处会随机刷新出一个数字的格子。
4、当界面不可运动时(当界面全部被数字填满时),游戏结束;当界面中最大数字是2048时,游戏胜利。
(3)意大利程序员扩展阅读:
2048版本
1、传统版
有16个格子,初始时会有两个格子上安放了两个数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,系统也会在空白的地方随即出现一个数字方块,相同数字的方块在靠拢、相撞时会相加。
2、汉服版
原版的数字由各种汉服形制的图片替代,不断的叠加最终拼凑出“玄端”这个汉服形制方块就算成功。
3、朝代版
数字置换成中国自夏开始的各个朝代,就是两个夏拼成一个商,两个商拼成一个周……每次碰撞后便生成下一个朝代,以此类推直到中华人民共和国完成通关。
⑷ 各国程序员薪资水平,咱有点惨
智能招聘平台 CodeSubmit 统计分析了 20 多个国家在 2022 年的软件工程领域的平均工资发现,美国的软件工程师薪资水平最高,瑞士和以色列紧随其后。
前十榜单还包括丹麦、加拿大、挪威、澳大利亚、英国、德国和瑞典。中国则排在第 19 位,平均薪资水平为 23,790 美元 / 年。
其他方面,印度是一个西方公司倾向于将其技术需求外包的国家,其平均年薪为 7,725 美元。尼日尔爾利亚薪资水平垫底,为 7,255 美元 / 年。
CodeSubmit 方面指出,总体而言软件开发是世界上最受欢迎的职业。对软件开发人员需求最高的国家是加拿大、澳大利亚、俄罗斯、瑞典和新西兰;由于人才紧缺,工资水平也往往更高。
美国软件开发人员 的平均工资为每年 110,140 美元或每月 9,178 美元。初级开发人员的平均工资为每年 69,354 美元或每月 5,779 美元,高级开发人员的平均工资为每年 104,188 美元或每月 8,682 美元。
软件开发人员收入最高的州是加利福尼亚,平均工资为 146,770 美元;华盛顿次之。收入最高的城市包括圣何塞(167,420 美元)、旧金山(158,320 美元)和西雅图(148,200 美元)。
该国的编程语言平均薪资水平中,Go 和 python 等流行的后端语言位居榜首。具体表现为:
欧洲软件开发人员的平均工资水平低于美国。
总体而言,欧洲国家在东西方之间存在很大差异。 西欧开发者 的年收入至少为 40,000 美元以上,而 东欧的开发者 期望的收入要少得多,约为 20,000 美元以上; 南欧开发者 的薪酬也要低于北欧开发者。 西班牙、意大利、葡萄牙和希腊的开发人员 预计年薪范围在 21,314 到 36,323 美元。
美国和欧洲国家之外, 以色列软件开发人员 的平均年薪为 71,559 美元或每月 5,963 美元。初级开发人员每年赚 69,851 美元或每月 5,820 美元,高级开发人员通常年薪为 114,751 美元或每月 9,562 美元。
语言方面,Golang(每年 109,702 美元)和 Python(每年 83,369 美元)平均薪资水平最高。PHP 和 Ruby 在以色列支付的薪资水平最低,分别为每年 64,573 美元和 64,525 美元。
此外, 日本开发人员 的平均工资为每年 36,024 美元或每月 3,002 美元。编程语言薪资方面,iOS 水平最高,Ruby 位居第二;SQL 和 Java 是日本收入最低的编程语言。
印度软件开发人员 的平均工资为每年 7,725 美元或每月 643 美元。Ruby 是印度收入最高的编程语言,每年 12,372 美元。Android 是薪资水平最低的语言,为 5,181 美元 / 年。
总体而言,各国总体编程语言薪资水平中,Golang 和 Ruby 往往是高薪语言,而 JavaScript 和 PHP 则是工资最低的语言。
⑸ 人类史上第一个程序员是谁她做了哪些改变世界的举动
Richard Stallman,首先他是将程序运用到了电脑体内,所以能够让电脑有了WiFi。
⑹ 艾达:生来本是白富美,却甘做第一位女码农
英国是一个盛产数学家和计算机天才的地方。除了图灵(人工智能之父)、伯纳斯·李(万维网之父)、杰米斯·哈萨比斯(阿尔法狗之父)之外,你或许不知道,世界上第一个女程序员也是英国人。不过和人们印象中略显呆板羞涩的码农不一样,这位程序员不仅是白富美,而且出身高贵,她就是艾达·洛夫莱斯(Ada Lovelace),英国着名诗人拜伦的女儿。
艾达于1815年12月10日降生在一个赫赫有名的英国上流社会家庭。他的父亲是大诗人拜伦,她的母亲是安妮•伊莎贝拉•米尔班奇(Annabella Milbanke),是一位拥有温特沃斯男爵夫人头衔的大家闺秀。
文艺青年拜伦或许是一个杰出诗人,但他绝不是个靠谱的丈夫和父亲。拜伦放荡不羁,热衷于诗歌、女人(有时也包括男人)、和酒精。母亲安妮是一位受过良好教育、有宗教信仰、举止得体的女性,她热衷社会公益,钟情数理化,拜伦称她为“平行四边形公主”。艾达出生几周后,父母离婚,之后拜伦离开英国,从此艾达再也没有见到过父亲。在艾达8岁的时候,拜伦在希腊独立战争中病死,时年36岁。
艾达母亲生怕女儿继承父亲狂放不羁的诗人做派,她希望“以毒攻毒”,用数学的力量压住女儿的诗人基因。
艾达的母亲甚至给女儿的保姆下这样的命令:只给她讲事实,不能让任何虚构无聊的故事进入到她的头脑中。
就这样,艾达长大了 …
那个时候生在贵族家庭的女孩,大多热衷于在舞厅里跳舞,嫁个不错的老公,但是艾达却想着制造一个飞行器。她四处寻找各种新发明,思考蒸汽机是如何提供动力的,研究鸟类的解剖来寻找适合飞行的机翼尺寸。在一个数学只属于男人的时代,她却把热情投入到自己所喜欢的计算机科学中。
艾达自幼体弱多病,经常头疼眼花,曾患过一场严重的麻疹,在床上修养了将近一年,之后仍然行动不便,经过长期复健之后才逐渐恢复行走能力。与母亲同住的期间,艾达的教育从未被中断过,安娜深信教育的影响力,努力栽培艾达的数学和科学能力。数学占据了她人生的绝大部分,扎实的数学基础,也让艾达对计算机领域的研究提供了有力的支持。1835年,艾达与威廉•金结婚,并于1838年成为洛夫莱斯伯爵夫人。
17岁时,艾达认识了查尔斯•巴贝奇(英国数学家、发明家兼机械工程师。由于提出了差分机与分析机的设计概念,被视为计算机先驱 ),并参与了巴贝奇的差分机。艾达认识巴贝奇时,他的差分机研究一再失败,自助也被停止了,急需大量金钱来投入研究。艾达并没有自己的私房钱,所以靠翻译论文来赚些钱的需求就产生了。
1842年到1843年间,艾达花了9个月的时间,翻译出意大利军事工程师的差分机论文,并加上了长篇的笔记。她的笔记里包含了一套伯努利数运算,这种算法被认为是世界上第一个计算机程序。
尽管巴贝奇以前写过部分程序,但是艾达的记录是完成最详细的,艾达的笔记对早期电脑发展史起了十分重要的作用。但更重要的是,她明白数字不仅能代表数量,更可以处理任何能用数字代表的信息数据。她预言:“这个机器未来可以用来排版、边去或是各种更复杂的用途。”艾达的预见能力比同行超前了整整一个世纪。
尽管艾达生活中大部分不幸似乎都来自父亲,但是最终却患上了母亲的家族遗传病。1852年,年仅36岁的艾达为了治疗子宫癌,却因此失血过多,留下了两个儿子和一个女儿。按她的遗言,葬在父亲身边。
上世纪70年代,美国国防部为所属的嵌入式计算机系统设计了一套高效安全的计算机语言,这个语言最后就以“艾达”命名,它就是后来着名的”Ada”语言。
2009年,英国社会软件开源运动倡导人和记者Suw Charman-Anderson创办了Ada Lovelace Day,来庆祝她对科学和工程做出的贡献,这个节日让我们更多地去了解那些投身于科学技术、工程和数学领域的女性。
⑺ 程序员为什么要学深度学习
费良宏:程序员为什么要学深度学习?
深度学习本身是一个非常庞大的知识体系。本文更多想从程序员的视角出发,让大家观察一下深度学习对程序员意味着什么,以及我们如何利用这样一个高速发展的学科,来帮助程序员提升软件开发的能力。
本文根据费良宏在2016QCon全球软件开发大会(上海)上的演讲整理而成。
前言
1973年,美国上映了一部热门的科幻电影《WestWorld》,三年之后又有一个续集叫做《FutureWorld》。这部电影在80年代初被引进到中国叫《未来世界》。那部电影对我来讲简直可以说得上是震撼。影片中出现了很多机器人,表情丰富的面部下面都是集成电路板。这让那时候的我觉得未来世界都是那么遥远、那么神秘。
时间到了2016年,很多朋友可能都在追看HBO斥巨资拍摄的同一题材的系列剧《WestWorld》。如果前两部电影还是局限在机器人、人工智能这样的话题,2016年的新剧则在剧情和人工智能的思考方面有了很大的突破。不再渲染机器人是否会威胁到人类,而是在探讨“Dreamsaremainlymemories”这一类更具哲理的问题。
“记忆究竟如何影响了智能”这个话题非常值得我们去思考,也给我们一个很好的启示——今天,人工智能领域究竟有了怎样的发展和进步。
今天我们探讨的话题不仅仅是简单的人工智能。如果大家对深度学习感兴趣,我相信各位一定会在搜索引擎上搜索过类似相关的关键字。我在Google上以deeplearning作为关键字得到了2,630万个搜索的结果。这个数字比一周之前足足多出了300多万的结果。这个数字足以看得出来深度学习相关的内容发展的速度,人们对深度学习的关注也越来越高。
从另外的一个角度,我想让大家看看深度学习在市场上究竟有多么热门。从2011年到现在一共有140多家专注人工智能、深度学习相关的创业公司被收购。仅仅在2016年这种并购就发生了40多起。
其中最疯狂的是就是Google,已经收购了 11 家人工智能创业公司,其中最有名的就是击败了李世石九段的 DeepMind。排名之后的就要数 Apple、Intel以及Twitter。以Intel 公司为例,仅在今年就已经收购了 3 家创业公司,Itseez、Nervana 和 Movidius。这一系列大手笔的并购为了布局人工智能以及深度学习的领域。
当我们去搜索深度学习话题的时候,经常会看到这样的一些晦涩难懂的术语:Gradient descent(梯度下降算法)、Backpropagation(反向传播算法)、Convolutional Neural Network(卷积神经网络)、受限玻耳兹曼机(Restricted Boltzmann Machine)等。
如打开任何一篇技术文章,你看到的通篇都是各种数学公式。大家看到如下左边的图,其实并不是一篇高水准的学术论文,而仅仅是维基网络关于玻耳兹曼机的介绍。维基网络是科普层面的内容,内容复杂程度就超过了大多数数学知识的能力。
在这样的背景之下,我今天的的话题可以归纳成三点:第一,我们为什么要学习深度学习;第二,深度学习最核心的关键概念就是神经网络,那么究竟什么是神经网络;第三,作为程序员,当我们想要成为深度学习开发者的时候,我们需要具备怎样的工具箱,以及从哪里着手进行开发。
为什么要学习深度学习
首先,我们谈谈为什么要学习深度学习。在这个市场当中,最不缺乏的就是各种概念以及各种时髦新技术的词汇。深度学习有什么不一样的地方?我非常喜欢AndrewNg(吴恩达)曾经用过的一个比喻。
他把深度学习比喻成一个火箭。这个火箭有一个最重要的部分,就是它的引擎,目前来看在这个领域里面,引擎的核心就是神经网络。大家都知道,火箭除了引擎之外还需要有燃料,那么大数据其实就构成了整个火箭另外的重要组成部分——燃料。以往我们谈到大数据的时候,更多是强调存储和管理数据的能力,但是这些方法和工具更多是对于以往历史数据的统计、汇总。
而对于今后未知的东西,这些传统的方法并不能够帮助我们可以从大数据中得出预测的结论。如果考虑到神经网络和大数据结合,我们才可能看清楚大数据真正的价值和意义。AndrewNg就曾经说过“我们相信(神经网络代表的深度学习)是让我们获得最接近于人工智能的捷径”。这就是我们要学习深度学习的一个最重要的原因。
其次,随着我们进行数据处理以及运算能力的不断提升,深度学习所代表的人工智能技术和传统意义上人工智能技术比较起来,在性能上有了突飞猛进的发展。这主要得益于在过去几十间计算机和相关产业不断发展带来的成果。在人工智能的领域,性能是我们选择深度学习另一个重要的原因。
这是一段Nvidia在今年公布的关于深度学习在无人驾驶领域应用的视频。我们可以看到,将深度学习应用在自动驾驶方面,仅仅经历了3千英里的训练,就可以达到什么样的程度。在今年年初进行的实验上,这个系统还不具备真正智能能力,经常会出现各种各样的让人提心吊胆的状况,甚至在某些情况下还需要人工干预。
但经过了3千英里的训练之后,我们看到在山路、公路、泥地等各种复杂的路况下面,无人驾驶已经有了一个非常惊人的表现。请大家注意,这个深度学习的模型只经过了短短几个月、3千英里的训练。
如果我们不断完善这种模型的话,这种处理能力将会变得何等的强大。这个场景里面最重要的技术无疑就是深度学习。我们可以得出一个结论:深度学习可以为我们提供强大的能力,如果程序员拥有了这个技术的话,无异于会让每个程序员如虎添翼。
神经网络快速入门
如果我们对于学习深度学习没有任何疑虑的话,接下来就一定会关心我需要掌握什么样的知识才能让我进入到这个领域。这里面最重要的关键技术就是“神经网络”。说起“神经网络”,容易混淆是这样两个完全不同的概念。
一个是生物学神经网络,第二个才是我们今天要谈起的人工智能神经网络。可能在座的各位有朋友在从事人工智能方面的工作。当你向他请教神经网络的时候,他会抛出许多陌生的概念和术语让你听起来云里雾里,而你只能望而却步了。
对于人工智能神经网络这个概念,大多数的程序员都会觉得距离自己有很大的距离。因为很难有人愿意花时间跟你分享神经网络的本质究竟是什么。而你从书本上读的到的理论和概念,也很让你找到一个清晰、简单的结论。
今天就我们来看一看,从程序员角度出发神经网络究竟是什么。我第一次知道神经网络这个概念是通过一部电影——1991年上映的《终结者2》。男主角施瓦辛格有一句台词:
“MyCPUisaneural-netprocessor;alearningcomputer.”(我的处理器是一个神经处理单元,它是一台可以学习的计算机)。从历史来看人类对自身智力的探索,远远早于对于神经网络的研究。
1852年,意大利学者因为一个偶然的失误,将人类的头颅掉到硝酸盐溶液中,从而获得第一次通过肉眼关注神经网络的机会。这个意外加速了对人类智力奥秘的探索,开启了人工智能、神经元这样概念的发展。
生物神经网络这个概念的发展,和今天我们谈的神经网络有什么关系吗?我们今天谈到的神经网络,除了在部分名词上借鉴了生物学神经网络之外,跟生物学神经网络已经没有任何关系,它已经完全是数学和计算机领域的概念,这也是人工智能发展成熟的标志。这点大家要区分开,不要把生物神经网络跟我们今天谈到的人工智能有任何的混淆。
90年代中期,由Vapnik等人提出了支持向量机算法(Support Vector Machines,支持向量机)。很快这个算法就在很多方面体现出了对比神经网络的巨大优势,例如:无需调参、高效率、全局最优解等。基于这些理由,SVM算法迅速打败了神经网络算法成为那个时期的主流。而神经网络的研究则再次陷入了冰河期。
在被人摒弃的十年里面,有几个学者仍然在坚持研究。其中很重要的一个人就是加拿大多伦多大学的Geoffery Hinton教授。2006年,他的在着名的《Science》杂志上发表了论文,首次提出了“深度信念网络”的概念。
与传统的训练方式不同,“深度信念网络”有一个“预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“微调”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。在他的论文里面,他给多层神经网络相关的学习方法赋予了一个新名词— “深度学习”。
很快,深度学习在语音识别领域崭露头角。接着在2012年,深度学习技术又在图像识别领域大展拳脚。Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千个类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了将近11个百分点。
这个结果充分证明了多层神经网络识别效果的优越性。从那时起,深度学习就开启了新的一段黄金时期。我们看到今天深度学习和神经网络的火热发展,就是从那个时候开始引爆的。
利用神经网络构建分类器,这个神经网络的结构是怎样的?
其实这个结构非常简单,我们看到这个图就是简单神经网络的示意图。神经网络本质上就是一种“有向图”。图上的每个节点借用了生物学的术语就有了一个新的名词 – “神经元”。连接神经元的具有指向性的连线(有向弧)则被看作是“神经”。这这个图上神经元并不是最重要的,最重要的是连接神经元的神经。每个神经部分有指向性,每一个神经元会指向下一层的节点。
节点是分层的,每个节点指向上一层节点。同层节点没有连接,并且不能越过上一层节点。每个弧上有一个值,我们通常称之为”权重“。通过权重就可以有一个公式计算出它们所指的节点的值。这个权重值是多少?我们是通过训练得出结果。它们的初始赋值往往通过随机数开始,然后训练得到的最逼近真实值的结果作为模型,并可以被反复使用。这个结果就是我们说的训练过的分类器。
节点分成输入节点和输出节点,中间称为隐层。简单来说,我们有数据输入项,中间不同的多个层次的神经网络层次,就是我们说的隐层。之所以在这样称呼,因为对我们来讲这些层次是不可见的。输出结果也被称作输出节点,输出节点是有限的数量,输入节点也是有限数量,隐层是我们可以设计的模型部分,这就是最简单的神经网络概念。
如果简单做一个简单的类比,我想用四层神经网络做一个解释。左边是输入节点,我们看到有若干输入项,这可能代表不同苹果的RGB值、味道或者其它输入进来的数据项。中间隐层就是我们设计出来的神经网络,这个网络现在有不同的层次,层次之间权重是我们不断训练获得一个结果。
最后输出的结果,保存在输出节点里面,每一次像一个流向一样,神经是有一个指向的,通过不同层进行不同的计算。在隐层当中,每一个节点输入的结果计算之后作为下一层的输入项,最终结果会保存在输出节点上,输出值最接近我们的分类,得到某一个值,就被分成某一类。这就是使用神经网络的简单概述。
除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来表示一个神经网络。这时候,输入层在图的最下方,输出层则在图的最上方。从左到右的表达形式以AndrewNg和LeCun的文献使用较多。而在Caffe框架里则使用的则是从下到上的表达。
简单来说,神经网络并不神秘,它就是有像图,利用图的处理能力帮助我们对特征的提取和学习的过程。2006年Hinton的那篇着名的论文中,将深度学习总结成三个最重要的要素:计算、数据、模型。有了这三点,就可以实现一个深度学习的系统。
程序员需要的工具箱
对于程序员来说,掌握理论知识是为了更好的编程实践。那就让我们看看,对于程序员来说,着手深度学习的实践需要准备什么样的工具。
硬件
从硬件来讲,我们可能需要的计算能力,首先想到的就是CPU。除了通常的CPU架构以外,还出现了附加有乘法器的CPU,用以提升计算能力。此外在不同领域会有DSP的应用场景,比如手写体识别、语音识别、等使用的专用的信号处理器。还有一类就是GPU,这是一个目前深度学习应用比较热门的领域。最后一类就是FPGA(可编程逻辑门阵列)。
这四种方法各有其优缺点,每种产品会有很大的差异。相比较而言CPU虽然运算能力弱一些,但是擅长管理和调度,比如读取数据,管理文件,人机交互等,工具也丰富。DSP相比而言管理能力较弱,但是强化了特定的运算能力。
这两者都是靠高主频来解决运算量的问题,适合有大量递归操作以及不便拆分的算法。GPU的管理能力更弱一些,但是运算能力更强。但由于计算单元数量多,更适合整块数据进行流处理的算法。
FPGA在管理与运算处理方面都很强,但是开发周期长,复杂算法开发难度较大。就实时性来说,FPGA是最高的。单从目前的发展来看,对于普通程序员来说,现实中普遍采用的计算资源就还是是CPU以及GPU的模式,其中GPU是最热门的领域。
这是我前天为这次分享而准备的一个AWS 上p2的实例。仅仅通过几条命令就完成了实例的更新、驱动的安装和环境的设置,总共的资源创建、设置时间大概在10分钟以内。而之前,我安装调试前面提到的那台计算机,足足花了我两天时间。
另外,从成本上还可以做一个对比。p2.8xLarge 实例每小时的费用是7.2美元。而我自己那台计算机总共的花费了是¥16,904元。这个成本足够让我使用350多个小时的p2.8xLarge。在一年里使用AWS深度学习站就可以抵消掉我所有的付出。随着技术的不断的升级换代,我可以不断的升级我的实例,从而可以用有限的成本获得更大、更多的处理资源。这其实也是云计算的价值所在。
云计算和深度学习究竟有什么关系?今年的8月8号,在IDG网站上发表了一篇文章谈到了这个话题。文章中做了这样一个预言:如果深度学习的并行能力不断提高,云计算所提供的处理能力也不断发展,两者结合可能会产生新一代的深度学习,将带来更大影响和冲击。这是需要大家考虑和重视的一个方向!
软件
深度学习除了硬件的基础环境之外。程序员会更关心与开发相关的软件资源。这里我罗列了一些曾经使用过的软件框架和工具。
Scikit-learn是最为流行的一个Python机器学习库。它具有如下吸引人的特点:简单、高效且异常丰富的数据挖掘/数据分析算法实现; 基于NumPy、SciPy以及matplotlib,从数据探索性分析,数据可视化到算法实现,整个过程一体化实现;开源,有非常丰富的学习文档。
Caffe专注在卷及神经网络以及图像处理。不过Caffe已经很久没有更新过了。这个框架的一个主要的开发者贾扬清也在今年跳槽去了Google。也许曾经的霸主地位要让位给他人了。
Theano 是一个非常灵活的Python 机器学习的库。在研究领域非常流行,使用上非常方便易于定义复杂的模型。Tensorflow 的API 非常类似于Theano。我在今年北京的QCon 大会上也分享过关于Theano 的话题。
Jupyter notebook 是一个很强大的基于ipython的python代码编辑器,部署在网页上,可以非常方便的进行交互式的处理,很适合进行算法研究合数据处理。
Torch 是一个非常出色的机器学习的库。它是由一个比较小众的lua语言实现的。但是因为LuaJIT 的使用,程序的效率非常出色。Facebook在人工智能领域主打Torch,甚至现在推出了自己的升级版框架Torchnet。
深度学习的框架非常之多,是不是有一种乱花渐欲迷人眼的感觉?我今天向各位程序员重点介绍的是将是TensorFlow。这是2015年谷歌推出的开源的面向机器学习的开发框架,这也是Google第二代的深度学习的框架。很多公司都使用了TensorFlow开发了很多有意思的应用,效果很好。
用TensorFlow可以做什么?答案是它可以应用于回归模型、神经网络以深度学习这几个领域。在深度学习方面它集成了分布式表示、卷积神经网络(CNN)、递归神经网络(RNN) 以及长短期记忆人工神经网络(Long-Short Term Memory, LSTM)。
关于Tensorflow 首先要理解的概念就是Tensor。在辞典中对于这个词的定义是张量,是一个可用来表示在一些向量、标量和其他张量之间的线性关系的多线性函数。实际上这个表述很难理解,用我自己的语言解释Tensor 就是“N维数组”而已。
使用 TensorFlow, 作为程序员必须明白 TensorFlow这样几个基础概念:它使用图 (Graph) 来表示计算任务;在被称之为 会话 (Session) 的上下文 (context) 中执行图;使用 Tensor 表示数据;通过 变量 (Variable) 维护状态;使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。
一句话总结就是,TensorFlow 就是有状态图的数据流图计算环境,每个节点就是在做数据操作,然后提供依赖性和指向性,提供完整数据流。
TensorFlow安装非常简单,但官网提供下载的安装包所支持的CUDA 的版本是7.5。考虑到CUDA 8 的让人心动的新特以及不久就要正式发布的现状。或许你想会考虑立即体验CUDA 8,那么就只能通过编译Tensorflow源代码而获得。目前TensorFlow已经支持了Python2.7、3.3+。
此外,对于使用Python 语言的程序员还需要安装所需要的一些库,例如:numpy、protobuf等等。对于卷积处理而言,cuDNN是公认的性能最好的开发库,请一定要安装上。常规的Tensorsorflow的安装很简单,一条命令足矣:
$ pip3 install —upgrade https://storage.233.wiki/tensorflow/linux/cpu/tensorflow-0.11.0rc0-cp35-cp35m-linux_x86_64.whl
如果想评估一下或者简单学习一下,还可以通过Docker进行安装,安装的命令如下:
$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
TensorFlow有很多优点。首先,目前为止,深度学习的开发框架里面TensorFlow的文档做的最好,对程序员学习而言是非常好的一点。第二,TensorFlow有丰富的参考实例,作为参考学习起来非常容易。
第三,开发者社区活跃,在任何一个深度学习的社区里,都有大量关于TensorFlow的讨论。第四,谷歌的支持力度非常大,从2015年到现在升级速度非常快,这是其他开源框架远远达不到的结果。
参考TensorFlow的白皮书,我们会看到未来TensorFlow还将会有巨大的发展潜力。让我特别感兴趣是这两个方向。第一,支持跨多台机器的 parallelisation。尽管在0.8版本中推出了并行化的能力,但是目前还不完善。随着未来不断发展,依托云计算的处理能力的提升这个特性将是非常让人振奋的。
第二,支持更多的开发语言,对于开发者来说这是一个绝大的利好,通过使用自己擅长的语言使用TensorFlow应用。这些开发语言将会扩展到Java、Lua以及R 等。
在这里我想给大家展示一个应用Tensorflow 的例子。这个例子的代码托管在这个网址上 https://github.com/anishathalye/neural-style。白俄罗斯的现代印象派艺术家Leonid Afremov善于用浓墨重彩来表现都市和风景题材,尤其是其雨景系列作品。他习惯用大色块的铺陈来营造光影效果,对反光物体和环境色的把握非常精准。
于是我就找到了一张上海东方明珠电视塔的一张摄影作品,我希望通过Tensorflow 去学习一下Leonid Afremov 的绘画风格,并将这张东方明珠的照片处理成那种光影色彩丰富的作品风格。利用Tensorflow 以及上面提到的那个项目的代码,在一个AWS 的p2类型的实例上进行了一个一千次的迭代,于是就得到了下图这样的处理结果。
这个处理的代码只有350行里,模型使用了一个成名于2014年ImageNet比赛中的明星 VGG。这个模型非常好,特点就是“go depper”。
TensorFlow 做出这样的作品,并不仅仅作为娱乐供大家一笑,还可以做更多有意思的事情。将刚才的处理能力推广到视频当中,就可以看到下图这样的效果,用梵高着名的作品”星月夜“的风格就加工成了这样新的视频风格。
可以想象一下,如果这种处理能力在更多领域得以应用,它会产生什么样的神奇结果?前景是美好的,让我们有无限遐想。事实上我们目前所从事的很多领域的应用开发都可以通过使用神经网络和深度学习来加以改变。对于深度学习而言,掌握它并不是难事。每一个程序员都可以很容易的掌握这种技术,利用所具备的资源,让我们很快成为深度学习的程序开发人员。
结束语
未来究竟是什么样,我们没有办法预言。有位作家Ray Kurzweil在2005年写了《奇点临近》一书。在这本书里面他明确告诉我们,那个时代很快到来。作为那个时代曙光前的人群,我们是不是有能力加速这个过程,利用我们学习的能力实现这个梦想呢?
中国人工智能的发展
人工智能的时代无疑已经到来,这个时代需要的当然就是掌握了人工智能并将其解决具体问题的工程师。坦率的说,市场上这一类的工程师还属于凤毛麟角。职场上的薪酬待遇可以看得出来这样的工程师的抢手的程度。人工智能这门学科发展到今天,就学术自身而言已经具备了大规模产业化的能力。
所以说,对于工程师而言当务之急就是尽快的掌握应用人工智能的应用技术。当下在互联网上关于人工智能的学习资料可以说已经是“汗牛充栋”,那些具备了快速学习能力的工程师一定会在人工智能的大潮当中脱颖而出。
中国发展人工智能产业的环境已经具备。无论从创业环境、人员的素质乃至市场的机遇而言完全具备了产生产业变革的一切条件。与美国相比较,在人工智能的许多领域中国团队的表现也可以说是不逞多让。就人工智能的技术层面而言,中国的工程师与全球最好的技术团队正处于同一个起跑线上。
时不我待,中国的工程师是有机会在这个领域大展身手的。不过值得注意的是,要切忌两点:一是好高骛远,盲目与国外攀比。毕竟积累有长短,术业有专攻,我们要立足于已有的积累,寻求逐步的突破。二是一拥而上,盲目追求市场的风口。人工智能的工程化需要大量的基础性的积累,并非一蹴而就简单复制就可以成功。
中国的科研技术人员在人工智能领域的成就有目共睹。在王咏刚的一篇文章里面,他统计了从2013年到2015年SCI收录的“深度学习”论文,中国在2014年和2015年超已经超过了美国居于领跑者的位置。
另外一让我感到惊讶的事情,Google的JeffDean在2016年发表过一篇名为《TensorFlow:Asystemforlarge-scalemachinelearning》的论文。文章的22个作者里面,明显是中国名字的作者占已经到了1/5。如果要列举中国人/华人在人工智能领域里的大牛,吴恩达、孙剑、杨强、黄广斌、马毅、张大鹏……很容易就可以说出一大串。
对于中国来说目前的当务之急是人工智能技术的产业化,唯有如此我们才可以讲科研/智力领域的优势转化为整体的、全面的优势。在这一点上,中国是全球最大的消费市场以及制造业强国,我们完全有机会借助市场的优势成为这个领域的领先者。
硅谷创新企业
硅谷虽然去过许多回,但一直无缘在那里长期工作。在人工智能领域的市场我们听到的更多是围绕Google、Apple、Intel、Amazon这样的一些大型科技公司的一举一动。但是在美国市场上还有一大批小型的创业企业在人工智能这个领域有惊艳的表现。仅以硅谷区域的公司为例:
Captricity,提供了手写数据的信息提取;
VIVLab,针对语音识别开发了虚拟助手服务;
TERADEEP,利用FPGA提供了高效的卷积神经网络的方案;
还有提供无人驾驶解决方案的NetraDyne。
这个名单还可以很长,还有许许多多正在利用人工智能技术试图去创造历史的团队正在打造他们的梦想。这些团队以及他们正在专注的领域是值得我们去学习和体会的。
⑻ 看Python 超级程序员使用什么开发工具
我以个人的身份采访了几个顶尖的Python程序员,问了他们以下5个简单的问题:
当前你的主要开发任务是什么?
你在项目中使用的电脑是怎样的?
你使用什么IDE开发?
你将来的计划是什么?
有什么给Python程序员的建议?
就是这几个问题,我找了几个顶尖的程序员和编程书籍作家,问他们这几个相同的问题。下面是他们的回答,希望在他们的回答中你能找到一些可以让你的开发更便捷的工具。
Alex Martelli
Alex Martelli
人物简介:Alex Martelli是一位意大利计算机软件程序员,他是Python软件基金会的成员。从2005年初开始,他以“Über技术首领”的身份在加利福尼亚景山谷歌总部工作。他拥有意大利Bologna大学电子工程学位(1980)。他是《Python in a Nutshell》一书的作者,他还和其他人合着了《Python Cookbook》,他还写了一些其它一些作品,大部分都是和Python相关的。因为他对Python社区杰出的贡献,他被授予的荣誉包括2002 Activators’ Choice Award和2006 Frank Willison award。
你可以通过他的博客了解更多关于他的信息。
问题一、当前你的主要开发任务是什么?
给我的老板(谷歌)开发商业软件,大部分是商业智能方面。
问题二、你在项目中使用的硬件机器是怎样的?
基本上都是谷歌的云服务器,通过谷歌APP引擎直接或间接的使用。有时候也使用一个Unix工作站或Macbook Air,但很少。
问题三、你使用什么IDE开发?
vim, gvim, mvim; 偶尔用一下iPython,但这好像不能算是IDE吧。
问题四、你将来的计划是什么?
应该还会待在谷歌——具体的研究方向那要看实际情况。
问题五、有什么给Python程序员的建议?
学习一下App Engine(通过webapp2 或flask, jinja2, &c以及其它类似django的轻量级环境):它们大部分都会对你的web项目有很好的用处——如果你想在这些环境之外的地方部署web应用,Appscale会是你最方便的选择。
Daniel Greenfeld
Daniel Greenfeld
人物简介: Daniel Greenfeld是《Two Scoops of django》一书的合着人。他有超过6年的在Django领域的研究经验。之前他在美国宇航局做开发,就是在那里他开始了他的Python之旅,一直到现在。他目前是Cartwheel Web的负责人。
你可以通过他的Twitter: @pydanny 和他的博客获取他的更多信息。
问题一、当前你的主要开发任务是什么?
我现在的工作主要是客户端方面,基本上都是用Python。内容服务方面有时候会用到Django,但当前的主要工作基本上跟web无关。
问题二、你在项目中使用的硬件机器是怎样的?
硬件方面,我使用一个2011年的Macbook Air。因为我的开发方式,像Macbook
Air这样的超级本用起来非常舒服。可苹果的产品一般都很贵,我就自己配了一个,我打算所有的任务都用它来做。如果哪天我能有一个新的笔记本,我想试试Linux的超级本或Window8的平板(以前我是靠虚拟机运行Windows8)。
问题三、你使用什么IDE开发?
我使用Sublime Text。我更喜欢文本编辑器,而不是IDE,因为我喜欢深入研究程序库和它们的文档,而不是通过IDE工具来提示我。
问题四、你将来的计划是什么?
我未来的计划就是编程,锻炼,做我最擅长的事情。也许会去一个新地方旅游。我喜欢去没有去过的地方,认识新朋友,品尝没吃过的食物。但大部分我的旅游都是基于客户的需求,今年我不知道什么时候会有这样的机会。
问题五、有什么给Python程序员的建议?
我给Python程序员的建议是挑战极限。寻找新的代码库,研究它们,使用它们。它们有些会不是很好,不好的东西也会教会你一些东西(不该做的事情)。
Miguel Grinberg
Miguel Grinberg
人物简介: Miguel是一个程序员,摄影师和电影制作人。生活在美国俄勒冈州。他目前正在写一本关于使用Python和Flask做web开发的书,将会由 O’Reilly Media出版。这本书的官方网站是Flask Book。
你可以通过他的Twitter: @miguelgrinberg 和他的博客获取更多信息。
问题一、当前你的主要开发任务是什么?
也许你会吃惊,工作中我并不做web开发。我在为Harmonic做视频软件。C++是我在工作中使用的主要语言,但我们却使用了一个古老的用Python写的自动化单元测试框架,用起来很有趣。
空闲时间里我目前的第一大任务就是给O’Reilly出版社写一本关于Flask为框架的书,基本上快写成了。
问题二、你在项目中使用的硬件机器是怎样的?
我的机器是一个双系统的台式机,装的是Ubuntu和Windows8.1。我还有一个Mac OS X笔记本。
我在跨平台方面有些变态。除了给Arino这样的嵌入式系统写代码外,所有其它我写的代码(不管什么语言),都需要在三种平台上运行。为了达到这个目的,我会不断的在Linux,Windows和OS X机器间切换。
问题三、你使用什么IDE开发?
我有一些最爱。PyCharm非常棒,在大型项目时我越来越依赖它,主要是因为它的交互式的调试工具。
在Windows平台上我会使用Visual Studio的一个Python插件,免费的,非常出色,我估计大部分人没听说过它。
我还经常使用SublimeText,通常是在笔记本上使用它。
Notepad++是我在Window台式机上最顺手的工具。在我所有的电脑上都装有一个非常老的Vim,即使在Windows上也使用Cygwin运行它。
问题四、你将来的计划是什么?
我在四月份的PyCon大会上会有一个关于Flask的演讲,我下一步开始着手准备材料,因为书已经快写好了。
我最近没怎么写博客,我很想写一点。我想能多腾出一些时间写博客。我已经拟了一份话题目录,准备按着这个清单写。如果需要的话,我可以把里面的一个关于Flask上的web sockets的文章提到最前面。
问题五、有什么给Python程序员的建议?
我对所有程序员——不光是Python爱好者——的建议是,多去实践,然后把它们分享给世界。分享很重要,从别人那获得反馈是让你提高的好方法。
而对于Python程序员我想说的是,如果我们只需要用嘴去讨论Python2和Python3的差别、而不需要花时间将众多的软件移植到Python3,那该多好。玩笑。
说的太好了!
揭开其他程序员的面纱,窥视他们如何施展魔法工作,这很有用。你可以看到,他们使用的工具、技术,我们都可以采用,很多都是免费的。我很感谢他们能分享这些信息。