导航:首页 > 程序命令 > linux下nm命令

linux下nm命令

发布时间:2023-07-13 17:19:54

⑴ 在Red Hat linux 中程序函数库可以分为哪几种类型 它们的调用方法各是什么请说出nm和ldd两个命令的作

1)、在Red Hat Linux中函数库可以分为3种类型:静态函数库、共享函数库和动态加载函数库。
静态函数库在应用程序编译时就把函数的执行代码加入到应用程序中。
共享函数库中的函数当一个可执行程序启动时被加载。
动态加载函数库可以在程序运行的任何阶段加载函数。
2)、使用nm和ldd命令可以获得关于库函数的信息。
nm命令可以列出一个函数库文件中的符号表,它对静态的库函数和共享的库函数都能起作用。
ldd命令可以列出一个程序正常运行所需要的共享库。
3)、库函数缺省存放在/lib和/usr/lib中,以及动态库配置文件内所列的目录中。
如果库函数没有在这些目录下,可以在中加入所须目录,后运行ldconfig命令,使之生效。或设置环境变量LD_LIBRARY_PATH或LD_PRELOAD加入库函数所存放的目录。

还有不会的请参考《linux就该这么学》,针对各种linux疑难杂症,帮助linux学习者。

⑵ linux 查看当前的网络配置

linux 查看当前的网络配置

1、执行 ifconfig命令,结果如下可以查看到ip、mac地址等相关网络配置

配置说明

⑶ Linux里面nm是什么意思

这是一个非常罕察闭见的命令,搞Linux开发的人, 才可能会用到nm命令,其他老男孩Linux运维等几乎用不到。
nm命令是names的缩写, nm命令主要是用来列出某些文件中的符号(说白了就是一些败巧裂函数和全局变量等),具体查宽神看,可以网络 搜 linux nm。

⑷ linux系统C语言的nm是什么意思

不是C语言吧?是森笑游系统命令。用来列举object文件(比如编译出的a.out)的symbols.
用法是:
nm [-a|--debug-syms] [-g|--extern-only]
[-B] [-C|--demangle[=style]] [-D|--dynamic]
[-S|--print-size] [-s|--print-armap]
[-A|-o|--print-file-name]
[-n|-v|--numeric-sort] [-p|--no-sort]
[-r|--reverse-sort] [--size-sort] [-u|--undefined-only]
[-t radix|--radix=radix] [-P|--portability]
[--target=bfdname] [-fformat|--format=format]
[--defined-only] [-l|--line-numbers] [--no-demangle]
[-V|--version] [-X 32_64] [--help] [objfile...]

具体而言,nm用来列出目标文件的符号清单。
如果没有为nm命令升唯指出目标文件,则nm假定目标文件是a.out。下面列出该命令的任选项,大部分支持“-”开头的短格式和“-“开头的长格式。
-A、-o或--print-file-name:在找到的各个符号的名字前加上文件名,而不是在此文件的所有符号前只出现文件名一次。

例如nmlibtest.a的输出如下:

CPThread.o:
00000068TMain__8CPThreadPv
00000038TStart__8CPThread
00000014T_._8CPThread
00000000T__8CPThread
00000000?__FRAME_BEGIN__
…………………………………

则nm-A的输出如下:

libtest.a:CPThread.o:00000068TMain__8CPThreadPv
libtest.a:CPThread.o:00000038TStart__8CPThread
libtest.a:CPThread.o:00000014T_._8CPThread
libtest.a:CPThread.o:00000000T__8CPThread
libtest.a:CPThread.o:00000000?__FRAME_BEGIN__
…………………………………………………………..

-a或--debug-syms:显示调试符号。

-B:等同于--format=bsd,用来兼容MIPS的nm。

-C或--demangle:将低级符号名解码(demangle)成用户级名字。这样可以使得C 函数名具有可读性。

-D或--dynamic:显示动态符号。该任选项仅对于动态目标(例如特定类型的共享库)有意义。

-fformat:使用format格式输出。format可以选取bsd、sysv或posix,该选项在GNU的nm中有用。默认为bsd。

-g或--extern-only:仅显示外部符号。

-n、-v或--numeric-sort:按符号对应地址的顺序排序,而非按符号名的字符顺序。

-p或--no-sort:按目标此销文件中遇到的符号顺序显示,不排序。

-P或--portability:使用POSIX.2标准输出格式代替默认的输出格式。等同于使用任选项-fposix。

-s或--print-armap:当列出库中成员的符号时,包含索引。索引的内容包含:哪些模块包含哪些名字的映射。

-r或--reverse-sort:反转排序的顺序(例如,升序变为降序)。

--size-sort:按大小排列符号顺序。该大小是按照一个符号的值与它下一个符号的值进行计算的。

-tradix或--radix=radix:使用radix进制显示符号值。radix只能为“d”表示十进制、“o”表示八进制或“x”表示十六进制。

--target=bfdname:指定一个目标代码的格式,而非使用系统的默认格式。

-u或--undefined-only:仅显示没有定义的符号(那些外部符号)。

-l或--line-numbers:对每个符号,使用调试信息来试图找到文件名和行号。对于已定义的符号,查找符号地址的行号。对于未定义符号,查找指向符号重定位入口的行号。如果可以找到行号信息,显示在符号信息之后。

-V或--version:显示nm的版本号。

--help:显示nm的任选项。
ar cs libmy.a//创建一个库
ar rs libmy.a 1.o//增加一个模块
ar t libmy.a//显示库里的模块
ar d libmy.a 1.o//删除一个模块

⑸ Boot分区和root分区是什么

boot分区概述:
/boot分区就是操作系统的内核及在引导过程中使用的文件,一般是几年前的版本要求划分的一个区,大小为100MB左右,但现在的新版本都不需要对这个分区进行单独划分,也就是说你完全可以不分/boot。
安装Linux只要求两个基本分区,即根分区及交换分区,如果你的磁盘空间足够大,可以多划分空间给根分区,你也可以把常用的目录新建到桌面,如下载的软件包,放到桌面不影响你进入Linux系统的速度,当然这要求你有足够大的根分区。
BOOT目录下的文件:
vmlinuz
vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz。
vmlinuz的建立有两种方式。一是编译内核时通过“make zImage”创建,然后通过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。
二是内核编译时通过命令make bzImage创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage /boot/vmlinuz”产生。bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip 或 gzip –dc解包vmlinuz。 内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
initrd-x.x.x.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。initrd-2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/moles下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,initrd实现加载一些模块和安装文件系统等功能。
initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令,:man mkinitrd下面的命令创建initrd映象文件[1] 。
System.map
System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。
编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样:
nm /boot/vmlinux-2.4.7-10 > System.map
nm vmlinux | grep -v '\(compiled\)\|\(\.o$$\)\|\( [aUw] \)\|\(\.\.ng$$\)\|\(LASH[RL]DI\)' | sort > System.map
然后复制到/boot:
cp /usr/src/linux/System.map /boot/System.map-2.4.7-10
是System.map文件的一部分:
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。
然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。就是一个内核符号表,可知变量名checkCPUtype在内核地址c01000a5。
Linux 符号表使用到2个文件:
/proc/ksyms
System.map
/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件[1] 。
当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd,lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。
另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。
Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。
root是管理员的配置信息目录
root在linux和unix里是最高权限

⑹ /home/linux-2.6.25.8/scripts/mksysmap: line 43:arm-linux-nm command not found 怎么改

这个是因为你在那个文件中使用了arm-linux-nm这个命令,但是你的系统里并没有这个命令。
简单来说,你打一个显示当前文件夹内容的 ls 命令,但是如果你系统里没有这个命令,那么系统也会提示command not found,当然也不会显示当前文件夹内容。
这类问题常见于使用交叉编译链编译文件时,由于没有正确设禅答置编译链,系统无法找到对应的命令。依照经验,arm-linux-nm应该是交叉编译指令。
改正方法应该是,检查你的编译工具设置和makefile文件(可能没有),看二者与要编译的目标文件是否匹配,检查方法请参照你的板子手册含逗或者开发指导。正确设置后,重新执行或者编谈袭卖译。

⑺ 如何查看linux下so库里的符号

这个一般没有要求。一般/lib /usr/lib 其它的要看具体情况。。。 如果你是自己编译的应用程序,.so文件一般就在安装目录下的lib目录中。

⑻ linux下C程序段错误,

1. 段错误是什么
一句话来说,段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。这里贴一个对于“段错误”的准确定义(参考Answers.com):

A segmentation fault (often shortened to segfault) is a particular error condition that can occur ring the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors.

Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.

2. 段错误产生的原因
2.1 访问不存在的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
int *ptr = NULL;
*ptr = 0;
}

2.2 访问系统保护的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
int *ptr = (int *)0;
*ptr = 100;
}

2.3 访问只读的内存地址

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void main()
{
char *ptr = "test";
strcpy(ptr, "TEST");
}

2.4 栈溢出

#include<stdio.h>
#include<stdlib.h>桥埋埋
void main()
{
main();
}

等等其他原因。
3. 段错误信息的获取
程序发生段错误时,提示信息很少,下面有几种查看段错误的发生信息的途径。
3.1 dmesg
dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、敏蚂指令指针地址、堆栈指针地址、错误代码、错误原因等液冲。以程序2.3为例:
panfeng@ubuntu:~/segfault$ dmesg
[ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]
3.2 -g
使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:
panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c

3.3 nm
使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:

panfeng@ubuntu:~/segfault$ nm segfault3
08049f20 d _DYNAMIC
08049ff4 d _GLOBAL_OFFSET_TABLE_
080484dc R _IO_stdin_used
w _Jv_RegisterClasses
08049f10 d __CTOR_END__
08049f0c d __CTOR_LIST__
08049f18 D __DTOR_END__
08049f14 d __DTOR_LIST__
080484ec r __FRAME_END__
08049f1c d __JCR_END__
08049f1c d __JCR_LIST__
0804a014 A __bss_start
0804a00c D __data_start
08048490 t __do_global_ctors_aux
08048360 t __do_global_dtors_aux
0804a010 D __dso_handle
w __gmon_start__
0804848a T __i686.get_pc_thunk.bx
08049f0c d __init_array_end
08049f0c d __init_array_start
08048420 T __libc_csu_fini
08048430 T __libc_csu_init
U __libc_start_main@@GLIBC_2.0
0804a014 A _edata
0804a01c A _end
080484bc T _fini
080484d8 R _fp_hw
080482bc T _init
08048330 T _start
0804a014 b completed.6990
0804a00c W data_start
0804a018 b dtor_idx.6992
080483c0 t frame_mmy
080483e4 T main
U memcpy@@GLIBC_2.0

3.4 ldd
使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:
panfeng@ubuntu:~/segfault$ ldd ./segfault3
linux-gate.so.1 => (0x00e08000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000)
/lib/ld-linux.so.2 (0x00482000)

阅读全文

与linux下nm命令相关的资料

热点内容
我的世界如何获得服务器服主 浏览:17
相册本地加密 浏览:226
压缩文件夹共享 浏览:752
梁一端箍筋加密长度设置 浏览:447
linux开启路由 浏览:869
ping命令设置包大小和周期 浏览:673
Android怎么找 浏览:363
cmd命令显示中文 浏览:843
配置路由器默认路由的命令是 浏览:593
加密计算器是什么 浏览:122
服务器怎么执行sql 浏览:974
小孩子命令 浏览:708
贷款申请系统源码 浏览:268
windowsxp文件夹打开后怎么返回 浏览:664
怎么把pdf变成图片 浏览:797
17年程序员事件 浏览:496
iishttp压缩 浏览:31
公司文件加密后拷走能打开吗 浏览:186
headfirstjava中文 浏览:894
腾讯云服务器怎么放在电脑桌面 浏览:8