① 程序员是怎样解决问题的
程序员的五部曲:
第一、理解问题
解决问题的首要前提是客观准确地理解问题,这样我们才能抓住问题的本质,对症下药。
客观
为什么强调客观呢?在生活中,这样的情境很常见。
我们可以很客观地去评价他人,甚至是给他人给出合理的意见,但是同样的一件事情,放到我们自己身上,我们可能就会觉得束手无策。
通常情况下,我们对于自己的评价是带走自我保护心理的。
自己遇到问题,我们会下意识地弱化问题,或者情绪化地来理解问题,造成问题的失真。
魔镜的故事就是一个最典型的例子。
准确
当我们对自身的问题评价做不到客观的时候,我们往往也不会准确理解问题。
还有,准确的定义是找到问题的关键所在。这个怎么做呢?
我们仿照时间管理的方式。
首先对自己所要解决问题的过程做一个较为详细的记录。
坚持记录几天之后,我们需要将所有的记录结果进行汇总,分析,找出漏洞最大的地方。
那么这个洞也就是所谓的关键,我们也就可以找到解决问题的突破口。
举个例子,笔者前段时间开始用手机软件记录自己的时间花销,记录几天之后,就会发现,自己时间浪费最为严重的是娱乐。
知道了时间浪费的黑洞,那么接下来就该思考时间黑洞产生的原因了。
时间浪费的主要原因是两个
第一,目标流失
当我在网上查资料,或者用手机写作的时候,总会进入其他的浏览页面,等到自己发觉的时候,时间已经过去大半。
这个我称之为目标流失。也就是我们在网页浏览的时候已经忘记了自己最初的目的,比如说你本来想找一本书籍的txt版本,但是后来你发现自己浏览了一下午的娱乐新闻。
第二,多任务处理
这个问题我是经常遇到。比如说,我在进行日更的时候,有新同学发微信,说查一下宿舍的分配情况。
我当时的反应是火急火燎地去其刷微信,信息查询完毕之后,和分配在同一宿舍的同学聊了一下午。
最要命的是,等到你刷完屏的时候,你有很大可能会忘掉你在更这件事。
或者说你还记得,但你的精力已经消耗的差不多了,你会告诉自己,等会再更,然后你有很大的概率会断更。
找到时间黑洞形成的原因,那么就可以寻求解决措施了。
第二、计划
为自己的病症设置一个完整的疗程,根据问题出现的原因,制定每一步要采取的手段。
第三、拆解
这一步是和计划联系在一起的,只不过它的要求更加细化。
它需要我们将计划的每一步都拆解成可以执行的步骤,感兴趣的读者可以参考笔者的另外一篇文章《如何让遥不可及的梦想变得触手可及?》
第四、卡壳
可以说,我们每个人都有改变的想法,也确实有很多人尝试去做了,为什么还有那么多的放弃者。
因为在执行计划的时候,出现的变数让我们卡壳了。卡壳再正常不活了,那为什么会放弃?
答案是自我负罪感。
当我们卡壳的时候,我们大多数人会产生一种负罪感,就是觉得自己定计划的时候,详尽完备,而且自己已经坚持了这么长时间,会陷入一种自我怀疑,也就是负罪感。
解决的办法是立即采取行动,而不是描述问题本身,这也是我们解决所有问题的一个心态。
我们不要紧盯着问题本身,你理解问题的过程就是在采取行动,相反,你逢人就说,我遇到什么问题,我有多痛苦,没有任何意义。
第五、练习
其实这个步骤是对前面几步的一个综合。
这五部曲是一个闭环,是需要反复进行的,因为问题会不断出现。
回头看过去的生活,我们的历程何尝不是这样?不断遇到新问题,不断解决问题,然后获得新的体验。
想看更多文章
欢迎关注大鱼号【小妖影视】
② 75道程序员面试逻辑测试题(附答案)(1)
【1】 假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】 周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
【3】 三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。
那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林没死的情况下必打林,否则自己必死。
小李经过计算比较(过程略),会决定自己先打小林。
于是经计算,小李有873/2600≈33.6%的生机;
小黄有109/260≈41.9%的生机;
小林有24.5%的生机。
哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;
小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!
最后李,黄,林存活率约38:27:35;
菜鸟活下来抱得美人归的几率大。
李先放一空枪(如果合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己肯定先玩完了)林会选黄打一枪(毕竟它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性成功率0.73
李和黄打林李黄对决0.3:0.40.7 0.4可能性李林对决0.3:0.7 0.6 0.70.7 0.6可能性成功率0.64
【4】 一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?按:心理问题,不是逻辑问题
是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。
【5】 在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。
把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
【6】 一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
把球放在平面上,把直尺的一边卡在平面上,一边卡在球上,球与尺子的接触点到平面的距离就是球的半径.因为直尺长度约为直径的2/3>半径,所以能测量.
【7】 五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。
【8】 猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌? 方块5
【9】 一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):
假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
史上最雷人的应聘者
【10】 某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?
15% 80%/(85%×20%+15% 80%)
【11】 有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
f(x)=(60-2x)*x,当x=15时,有最大值450。
450×4
【12】 现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马) 6种结果
【13】 1=5,2=15,3=215,4=2145那么5=?
因为1=5,所以5=1.
【14】 有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。问:有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱
注:1美元=100美分拥有1美元的人,拥有的是纸币,没法破成2个50美分
本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:排队的种数=(2n)!/[n!(n+1)!]。
如果不考虑电影院能否找钱,那么一共有(2n)!/[n!n!]种排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,如果他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!/ (n-1)!(n+1)! 种,所以合格的排队种数就是(2n)!/[n!n!]- (2n)!/[(n-1)!(n+1)!] =(2n)!/[n!(n+1)!]。至于为什么不合格数是(2n)!/[(n-1)!(n+1)!],说起来太复杂,这里就不讲了。
【15】 一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
2元
【16】 有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第二,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。最后A得22分,B与C均得9分,B在百米赛中取得第一。求M的值,并问在跳高中谁得第二名。
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5 8=4 10=2 20=1 20,不难得出项目数只能是5.即M=5.
A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得这个第二.
B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.
【17】 前提:
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALLMALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10抽混合烟的人住在养猫人的旁边
11养马人住在抽DUNHILL烟的人旁边
12抽BLUEMASTER烟的人喝啤酒
13德国人抽PRINCE烟
14挪威人住在蓝房子旁边
15抽混合烟的人的邻居喝矿泉水
问题是:谁养鱼???
第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫;! f/ [% a: 6 L! J. Q9 x第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马;+ o8 _0 S) L8 i' E' u第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟;/ N9 o/ n2 M# U" c第四间是绿房子,德国人住,喝咖啡,抽PRINCE烟,养猫、马、鸟、狗以外的宠物;7 P5 l) G, G, |; C, {7 V第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。
【18】 5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。根据以下线索确定谁是养猫的人。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
第一间是兰房子,住北京人,养马,抽健牌香烟,喝茅台,吃豆腐;2 G7 x% z0 v; C第二间是绿房子,住上海人,养狗,抽希尔顿,喝葡萄酒,吃面条;% C2 k4 o8 t" p6 L* x第三间是黄房子,住香港人,养蛇,抽万宝路,喝矿泉水,吃牛肉;& N" S% x# o3 a; g第四间是红房子,住天津人,抽555,喝茶,吃比萨;7 5 s. J# d, Q/ N% N' O# ]第五间是白房子,住成都人,养鱼,抽红塔山,喝啤酒,吃鸡。
【19】 斗地主附残局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
长工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打错牌的情况下,地主必须要么输要么赢。问:哪方会赢?
无解地主怎么出都会输
【20】 一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
先拿下第一楼的钻石,然后在每一楼把手中的钻石与那一楼的钻石相比较,如果那一楼的钻石比手中的钻石大的话那就把手中的钻石换成那一层的钻石。
③ 程序员逻辑推理 图形题 怎么做
一般是两个图形叠加成为另一个,在一定顺序上旋转,每个特定元素出现特定次数。反正智商图形题部分可以这么解。
④ 程序员算法解题方法与思路
此方法通过写出问题的一些特定的例子,分析总结其中的规律。具体而言,就是通过列举少量的特殊情况,经过分析,最后找出一般的关系。
问题与以前莫个算法解决过的问题相似,此时就可以触类旁通,尝试改进原有算法来解决
此方法首先将问题简单化,如改变数据类型、空间大小等,然后尝试着将简化后的问题解决。
为了降低问题的复杂度,很多时候都会将问题逐层分解,最后归结为一些简单的问题,这就是递归法
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。分治法一般包括以下三个步骤:
1)将问题的实例划分为几个较小的实例,最好最有相等的规模。
2)对这些较小的实例求解,而最常见的方法一般是递归。
3)如歌有必要,合并这些较小问题的解,以得到原始问题的解。
一般而言,时间复杂度越低的算法越高效。而更想达到时间复杂度的高效,很多时候就必须在空间上有所牺牲,用空间来换时间。而用空间换时间最有效的方法就是Hash法、大数组和位图法。
在设计题目时,往往会有一个载体,这个载体便是数据结构。如数组、链表、二叉树和图等,当窄体确定后,可用的算法自然而然就会显现出来。可问题是很多时候并不确定这个载体是什么,当无法确定这个载体时,一般也就很难想到合适的方法了。
当遇到上面的问题时,可以采用最原始的思考问题的方式——轮询法。常考的数据结构与算法一共就几种,如下图
此种方法看似笨拙,却很实用,只要对常见的数据结构与算法烂熟于心,一点都没有问题。
⑤ 程序员算法实现-买卖股票的最佳时机系列问题
主要思路:因为只有一股可以交易,所以我们可以枚举 必须以i位置作为卖出时机的情况下,得到的最大收益是多少。如果我们得到每个i位置的最大收益,那么最大收益必是所有位置的最大收益的最大值 。
使用两个变量:
min变量:表示遍历到的位置之前的最小值是什么。
max变量:表示当前收集到必须以i位置卖出的最大收益是多少。
遍历数组一遍,在遍历到i位置的时候,min和max的更新逻辑如下:
遍历完数组,返回max的值就是最终答案。完整代码见:
主要思路:由于可以进行任意次的交易,但是任何时候最多只能持有一股股票,所以我们可以把股票曲线的所有 上升段 都抓取到,累加收益就是最大收益。遍历数组,遍历到的位置减去前一个位置的值,如果是正数,就收集,如果是负数,就把本次收益置为0(就等于没有做这次交易),这样遍历一遍数组,就不会错过所有的收益。
设置一个变量max,初始为0,用于收集最大收益值,来到i位置,max更新逻辑如下:
完整代码如下:
由本题可以简单得出一个结论: 如果数组元素个数为N,则最多执行N/2次交易就可以抓取所有的上升段的值(极端情况下,当前时刻买,下一个时刻卖,保持这样的交易一直到最后,执行的交易次数就是N/2) 。
主要思路:
在第2种情况下,我们定义
其中dp[i][j]表示[0...i]范围内交易j次获得的最大收益是多少。如果可以把dp这个二维表填好,那么返回dp[N-1][k]的值就是题目要的答案。
dp这个二维矩阵中,
第一行的值表示数组[0..0]范围内,交易若干次的最大收益,显然,都是0。
第一列的值表示数组[0...i]范围内,交易0次获得的最大收益,显然,也都是0。
针对任何一个普遍位置dp[i][j]的值,
我们可以枚举i位置是否参与交易,如果i位置不参与交易,那么dp[i][j] = dp[i-1][j],如果i位置参与交易,那么i位置一定是最后一次的卖出时机。
那最后一次买入的时机,可以是如下情况:
最后一次买入的时机在i位置,那么dp[i][j] = dp[i][j-1] - arr[i] + arr[i]
最后一次买入的时机在i-1位置,那么dp[i][j] = dp[i-1][j-1] - arr[i-1] + arr[i]
最后一次买入的时机在i-2位置,那么dp[i][j] = dp[i-2][j-1] - arr[i-2] + arr[i]
...
最后一次买入的时机在0位置,那么dp[i][j] = dp[0][j-1] - arr[0] + arr[i]
完整代码如下:
上述代码中包含一个枚举行为
增加了时间复杂度,我们可以优化这个枚举。
我们可以举一个具体的例子来说明如何优化,
比如,
当我们求dp[5][3]这个值,我们可以枚举5位置是否参与交易,假设5位置不参与交易,那么dp[5][3] = dp[4][3],假设5位置参与交易,那么5位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:
最后一次买入的时机在5位置,那么dp[5][3] = dp[5][2] - arr[5] + arr[5]
最后一次买入的时机在4位置,那么dp[5][3] = dp[4][2] - arr[4] + arr[5]
最后一次买入的时机在3位置,那么dp[5][3] = dp[3][2] - arr[3] + arr[5]
最后一次买入的时机在2位置,那么dp[5][3] = dp[2][2] - arr[2] + arr[5]
最后一次买入的时机在1位置,那么dp[5][3] = dp[1][2] - arr[1] + arr[5]
最后一次买入的时机在0位置,那么dp[5][3] = dp[0][2] - arr[0] + arr[5]
我们求dp[4][3]这个值,我们可以枚举4位置是否参与交易,假设4位置不参与交易,那么dp[4][3] = dp[3][3],假设4位置参与交易,那么4位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:
最后一次买入的时机在4位置,那么dp[4][3] = dp[4][2] - arr[4] + arr[4]
最后一次买入的时机在3位置,那么dp[4][3] = dp[3][2] - arr[3] + arr[4]
最后一次买入的时机在2位置,那么dp[4][3] = dp[2][2] - arr[2] + arr[4]
最后一次买入的时机在1位置,那么dp[4][3] = dp[1][2] - arr[1] + arr[4]
最后一次买入的时机在0位置,那么dp[4][3] = dp[0][2] - arr[0] + arr[4]
比较dp[5][3]和dp[4][3]的依赖关系,可以得到如下结论:
假设在求dp[4][3]的过程中,以下递推式的最大值我们可以得到
dp[4][2] - arr[4]
dp[3][2] - arr[3]
dp[2][2] - arr[2]
dp[1][2] - arr[1]
dp[0][2] - arr[0]
我们把以上式子的最大值定义为best,那么
dp[5][3] = Math.max(dp[4][3],Math.max(dp[5][2] - arr[5] + arr[5], best + arr[5]))
所以dp[5][3]可以由dp[4][3]加速得到,
同理,
dp[4][3]可以通过dp[3][3]加速得到,
dp[3][3]可以通过dp[2][3]加速得到,
dp[2][3]可以通过dp[1][3]加速得到,
dp[1][3]可以很简单得出,dp[1][3]有如下几种可能性:
可能性1,1位置完全不参与,则
可能性2,1位置作为最后一次的卖出时机,买入时机是1位置
可能性3,1位置作为最后一次的卖出时机,买入时机是0位置
此时,best的值为
然后通过dp[1][3]加速dp[2][3],通过dp[2][3]加速dp[3][3]......,所以二维dp的填写方式是按列填,
先填dp[1][0],dp[1][2]一直到dp[1][k],填好第一列;
然后填dp[2][0],dp[2][1]一直到dp[2][k],填好第二列;
...
依次填好每一列,直到填完第N-1列。
枚举行为被优化,优化枚举后的完整代码如下:
主要思路:上一个问题中,令k=2就是本题的答案。
主要思路:因为有了冷冻期,所以每个位置的状态有如下三种:
定义三个数组,分别表示i位置这三种情况下的最大值是多少
显然有如下结论:
针对一个普遍位置i
最大收益就是如上三种方式的最大值。完整代码见:
由于三个数组有递推关系,所以可以用三个变量替换三个数组,做空间压缩,优化后的代码如下:
主要思路:由于没有冷冻期,所以在i位置的时候,状态只有两种
针对0位置
针对普遍位置i
完整代码如下:
同样的,两个数组都有递推关系,可以做空间压缩,简化后的代码如下:
原文链接:买卖股票的最佳时机系列问题 - Grey Zeng - 博客园
⑥ 编程怎么才能让自己有思路呢
其实很简单
首先明白你要写一个什么东西【比如你要写一个登陆的程序】
然后分析你这个程序要那些步骤来完成 【以登陆举例】
(1)登陆页面写好
(2)分析基础元素有登陆账号,登陆密码,为了安全会有验证码 然后提交登陆
(3)这里就说登陆程序了 你把这些参数提交到后台,你的程序就开始了:
【1】验证验证是否正确
【2】验证账号是否存在
【3】验证账号密码是否正确
【4】验证通过记录session你这个登陆信息
通过基本分析你得到了这个程序大概要写哪些步骤 当然我写的是简单的例子分析,如果要更安全肯定还有一些操作
把你这些步骤以注释形式写道你的编程内,按照你的思路步骤来逐步编写
编写完成可以考虑下你的思路是否可以精简步骤,满满磨练就好了
⑦ 程序员都应该精通的六种算法,你会了吗
对于一名优秀的程序员来说,面对一个项目的需求的时候,一定会在脑海里浮现出最适合解决这个问题的方法是什么,选对了算法,就会起到事半功倍的效果,反之,则可能会使程序运行效率低下,还容易出bug。因此,熟悉掌握常用的算法,是对于一个优秀程序员最基本的要求。
那么,常用的算法都有哪些呢?一般来讲,在我们日常工作中涉及到的算法,通常分为以下几个类型:分治、贪心、迭代、枚举、回溯、动态规划。下面我们来一一介绍这几种算法。
一、分治算法
分治算法,顾名思义,是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治算法一般分为三个部分:分解问题、解决问题、合并解。
分治算法适用于那些问题的规模缩小到一定程度就可以解决、并且各子问题之间相互独立,求出来的解可以合并为该问题的解的情况。
典型例子比如求解一个无序数组中的最大值,即可以采用分治算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、贪心算法
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法的基本思路是把问题分成若干个子问题,然后对每个子问题求解,得到子问题的局部最优解,最后再把子问题的最优解合并成原问题的一个解。这里要注意一点就是贪心算法得到的不一定是全局最优解。这一缺陷导致了贪心算法的适用范围较少,更大的用途在于平衡算法效率和最终结果应用,类似于:反正就走这么多步,肯定给你一个值,至于是不是最优的,那我就管不了了。就好像去菜市场买几样菜,可以经过反复比价之后再买,或者是看到有卖的不管三七二十一先买了,总之最终结果是菜能买回来,但搞不好多花了几块钱。
典型例子比如部分背包问题:有n个物体,第i个物体的重量为Wi,价值为Vi,在总重量不超过C的情况下让总价值尽量高。每一个物体可以只取走一部分,价值和重量按比例计算。
贪心策略就是,每次都先拿性价比高的,判断不超过C。
三、迭代算法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。最终得到问题的结果。
迭代算法适用于那些每步输入参数变量一定,前值可以作为下一步输入参数的问题。
典型例子比如说,用迭代算法计算斐波那契数列。
四、枚举算法
枚举算法是我们在日常中使用到的最多的一个算法,它的核心思想就是:枚举所有的可能。枚举法的本质就是从所有候选答案中去搜索正确地解。
枚举算法适用于候选答案数量一定的情况。
典型例子包括鸡钱问题,有公鸡5,母鸡3,三小鸡1,求m钱n鸡的所有可能解。可以采用一个三重循环将所有情况枚举出来。代码如下:
五、回溯算法
回溯算法是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
典型例子是8皇后算法。在8 8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。
回溯法是求解皇后问题最经典的方法。算法的思想在于如果一个皇后选定了位置,那么下一个皇后的位置便被限制住了,下一个皇后需要一直找直到找到安全位置,如果没有找到,那么便要回溯到上一个皇后,那么上一个皇后的位置就要改变,这样一直递归直到所有的情况都被举出。
六、动态规划算法
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
动态规划算法适用于当某阶段状态给定以后,在这阶段以后的过程的发展不受这段以前各段状态的影响,即无后效性的问题。
典型例子比如说背包问题,给定背包容量及物品重量和价值,要求背包装的物品价值最大。
⑧ 编程好的思路。
我认为编程,重要的不是如何华丽的代码,而是能够将用户需求转化为机器语言的能力
你的很多思想,是刚开始做程序员的普遍想法,开始思考通过模块化设计能够更省力,更快捷的完成工作,程序运行效率还要高。
如果你在大软件公司工作过,就不会有这种困惑了。因为对于具有一定规模的软件公司,已经在相当的时间内积累起很丰富的模块和库资源,程序员们只需要根据项目的不同象选择自助餐一样给拼接到一起,就有了基本框架。
最重要的还是做好用户需求到需求说明,再到系统框架设计这个工作,会少走很多弯路。
细化到编写程序,我觉得很重要的一点就是要求公司里面的程序员要有绝对规范的编程习惯,不然在团队协作的时候会出很多问题,做出来的基础库也经不起时间的考验。
还有就是你说的模块化的东西不是万能的,和你经常从事的项目领域密切相关,你用着很顺手,别人可能用不了。比如你是做信息系统的,那么一个好的查询分析模块很多地方都能用,用户信息管理就要根据复杂程度做几套,比如能够定期更换密码的,比如权限是要细化到列的,比如只是一个简单的用户密码。根据项目的不同选用。
有些人鼓吹自动化编程,利用商业化的系统模板进行配置。我认为对于企业应用还是可以的,但是对于软件开发就不可取了。因为提供模板的单位水平如何你并不知道,里面是否存在大量bug你也不清楚,只是演示做的漂亮。一旦你用了这个东西,在你的项目中出现问题,你debug是查不到具体原因的,苦果只能自己吃,这是个建议,有点离题,但是怕你思路到了一定程度就推崇这种方法。
最后一点,大部分的项目都是需要数据库作为后台支持的,一定要注意处理好数据库设计的问题,不然很容易因为库设计的不合理造成程序复杂,或者是在使用一段时间后效率严重降低,造成程序重新返工,就说这么多,希望你能有所收获