导航:首页 > 程序命令 > 微信程序员是否可以玩股票

微信程序员是否可以玩股票

发布时间:2023-11-18 05:01:19

程序员算法实现-买卖股票的最佳时机系列问题

主要思路:因为只有一股可以交易,所以我们可以枚举 必须以i位置作为卖出时机的情况下,得到的最大收益是多少。如果我们得到每个i位置的最大收益,那么最大收益必是所有位置的最大收益的最大值

使用两个变量:

min变量:表示遍历到的位置之前的最小值是什么。

max变量:表示当前收集到必须以i位置卖出的最大收益是多少。

遍历数组一遍,在遍历到i位置的时候,min和max的更新逻辑如下:

遍历完数组,返回max的值就是最终答案。完整代码见:

主要思路:由于可以进行任意次的交易,但是任何时候最多只能持有一股股票,所以我们可以把股票曲线的所有 上升段 都抓取到,累加收益就是最大收益。遍历数组,遍历到的位置减去前一个位置的值,如果是正数,就收集,如果是负数,就把本次收益置为0(就等于没有做这次交易),这样遍历一遍数组,就不会错过所有的收益。

设置一个变量max,初始为0,用于收集最大收益值,来到i位置,max更新逻辑如下:

完整代码如下:

由本题可以简单得出一个结论: 如果数组元素个数为N,则最多执行N/2次交易就可以抓取所有的上升段的值(极端情况下,当前时刻买,下一个时刻卖,保持这样的交易一直到最后,执行的交易次数就是N/2)

主要思路:

在第2种情况下,我们定义

其中dp[i][j]表示[0...i]范围内交易j次获得的最大收益是多少。如果可以把dp这个二维表填好,那么返回dp[N-1][k]的值就是题目要的答案。

dp这个二维矩阵中,

第一行的值表示数组[0..0]范围内,交易若干次的最大收益,显然,都是0。

第一列的值表示数组[0...i]范围内,交易0次获得的最大收益,显然,也都是0。

针对任何一个普遍位置dp[i][j]的值,

我们可以枚举i位置是否参与交易,如果i位置不参与交易,那么dp[i][j] = dp[i-1][j],如果i位置参与交易,那么i位置一定是最后一次的卖出时机。

那最后一次买入的时机,可以是如下情况:

最后一次买入的时机在i位置,那么dp[i][j] = dp[i][j-1] - arr[i] + arr[i]

最后一次买入的时机在i-1位置,那么dp[i][j] = dp[i-1][j-1] - arr[i-1] + arr[i]

最后一次买入的时机在i-2位置,那么dp[i][j] = dp[i-2][j-1] - arr[i-2] + arr[i]

...

最后一次买入的时机在0位置,那么dp[i][j] = dp[0][j-1] - arr[0] + arr[i]

完整代码如下:

上述代码中包含一个枚举行为

增加了时间复杂度,我们可以优化这个枚举。

我们可以举一个具体的例子来说明如何优化,

比如,

当我们求dp[5][3]这个值,我们可以枚举5位置是否参与交易,假设5位置不参与交易,那么dp[5][3] = dp[4][3],假设5位置参与交易,那么5位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:

最后一次买入的时机在5位置,那么dp[5][3] = dp[5][2] - arr[5] + arr[5]

最后一次买入的时机在4位置,那么dp[5][3] = dp[4][2] - arr[4] + arr[5]

最后一次买入的时机在3位置,那么dp[5][3] = dp[3][2] - arr[3] + arr[5]

最后一次买入的时机在2位置,那么dp[5][3] = dp[2][2] - arr[2] + arr[5]

最后一次买入的时机在1位置,那么dp[5][3] = dp[1][2] - arr[1] + arr[5]

最后一次买入的时机在0位置,那么dp[5][3] = dp[0][2] - arr[0] + arr[5]

我们求dp[4][3]这个值,我们可以枚举4位置是否参与交易,假设4位置不参与交易,那么dp[4][3] = dp[3][3],假设4位置参与交易,那么4位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:

最后一次买入的时机在4位置,那么dp[4][3] = dp[4][2] - arr[4] + arr[4]

最后一次买入的时机在3位置,那么dp[4][3] = dp[3][2] - arr[3] + arr[4]

最后一次买入的时机在2位置,那么dp[4][3] = dp[2][2] - arr[2] + arr[4]

最后一次买入的时机在1位置,那么dp[4][3] = dp[1][2] - arr[1] + arr[4]

最后一次买入的时机在0位置,那么dp[4][3] = dp[0][2] - arr[0] + arr[4]

比较dp[5][3]和dp[4][3]的依赖关系,可以得到如下结论:

假设在求dp[4][3]的过程中,以下递推式的最大值我们可以得到

dp[4][2] - arr[4]

dp[3][2] - arr[3]

dp[2][2] - arr[2]

dp[1][2] - arr[1]

dp[0][2] - arr[0]

我们把以上式子的最大值定义为best,那么

dp[5][3] = Math.max(dp[4][3],Math.max(dp[5][2] - arr[5] + arr[5], best + arr[5]))

所以dp[5][3]可以由dp[4][3]加速得到,

同理,

dp[4][3]可以通过dp[3][3]加速得到,

dp[3][3]可以通过dp[2][3]加速得到,

dp[2][3]可以通过dp[1][3]加速得到,

dp[1][3]可以很简单得出,dp[1][3]有如下几种可能性:

可能性1,1位置完全不参与,则

可能性2,1位置作为最后一次的卖出时机,买入时机是1位置

可能性3,1位置作为最后一次的卖出时机,买入时机是0位置

此时,best的值为

然后通过dp[1][3]加速dp[2][3],通过dp[2][3]加速dp[3][3]......,所以二维dp的填写方式是按列填,

先填dp[1][0],dp[1][2]一直到dp[1][k],填好第一列;

然后填dp[2][0],dp[2][1]一直到dp[2][k],填好第二列;

...

依次填好每一列,直到填完第N-1列。

枚举行为被优化,优化枚举后的完整代码如下:

主要思路:上一个问题中,令k=2就是本题的答案。

主要思路:因为有了冷冻期,所以每个位置的状态有如下三种:

定义三个数组,分别表示i位置这三种情况下的最大值是多少

显然有如下结论:

针对一个普遍位置i

最大收益就是如上三种方式的最大值。完整代码见:

由于三个数组有递推关系,所以可以用三个变量替换三个数组,做空间压缩,优化后的代码如下:

主要思路:由于没有冷冻期,所以在i位置的时候,状态只有两种

针对0位置

针对普遍位置i

完整代码如下:

同样的,两个数组都有递推关系,可以做空间压缩,简化后的代码如下:

原文链接:买卖股票的最佳时机系列问题 - Grey Zeng - 博客园

❷ 认识很多会炒股的程序员,他们炒股有什么优势吗

我觉得程序员炒股票有一定的优势,同时也有一定的劣势,总体来说劣势会大于优势,大致的理由如下。

程序员的劣势

1、程序员由于自身职业的特点,平时更多是与计算机打交道,与人接触交流相对会比较少,在对外沟通交流方面可能会存在一些障碍,炒股票需要经常跟相关人员进行讨论、研究,这样才能提高个人的金融水平,想要程序员做到这一点可能会比较困难。

2、程序员对金融方面的知识储备不够,由于程序员本身更多的关注在IT技术方面,在金融方面的知识会比较薄弱,而炒股票需要了解企业经营、行业发展方向、股票的走势分析等,对金融方面的专业知识要求比较高,因此有很多程序员可能在这方面会有所欠缺。

股票

当然或许有的人可能会认为一些程序员智商比较高,但是程序员智商是否一定高,这个或许还要具体的判断,另外就算一个人智商真的特别高,哪怕是顶尖的科学家,如果去投资股票,也不一定就能够把投资股票做好,或者获得很大的投资的成功,所谓术业有专攻,不同的行业或者领域可能需要不同的专业能力,即使是智商再高的人,对于自己不了解或者陌生的领域,可能都会缺乏相应的专业能力,或许也很难把其他领域的事情做好。

❸ 35岁程序员炒Luna币千万资产3天归零,此事给予了我们哪些教训

35岁程序员炒Luna币千万资产3天归零,此事给予了我们哪些教训?

我历来都相信一句话,投资有风险炒股需谨慎,很多家庭都是因为炒股投资,最后搞得家破人亡,因为自己的不甘心和不满足,导致我们不能及时收手,这也是大家很多人的心理,最后连本金都收不回来赔的底朝天。

其实小额投资和小额的炒股,我们可以当它是一个生活的乐趣,如果家里也不富裕的话,我们拿出来一两千块钱谨慎地选择一下图个开心就好,对于这种一夜暴富的馅饼不可能就落在我们平凡人的头上。我们不是富豪没有过多的钱财,来进行挥霍,能做到的就只有脚踏实地一步一个脚印,所以我从来不相信,奇迹,更不相信奇迹也可以平白无故地砸在自己的头上,所以我们可以将其当成一种乐趣,而不是把这种当作自己挣钱的方式随便玩玩开心就好,不要过于认真,更不要将自己的所有钱财都去购买股票基金。

阅读全文

与微信程序员是否可以玩股票相关的资料

热点内容
打开微信收付款加密 浏览:396
小度app怎么关闭看护助手 浏览:739
服务器方舟boss属性怎么调 浏览:343
acos系统终端命令 浏览:913
宁德云服务器最新行情 浏览:475
压缩性骨折五十天 浏览:656
如何在服务器里把方块替换 浏览:909
变频空调摘板用什么替代压缩机 浏览:46
怎么在苹果手机上玩安卓和平精英 浏览:237
python异步调用框架 浏览:963
安卓手机如何拍live图 浏览:823
供应链管理系统源码 浏览:944
方舟编译器会适配哪些型号 浏览:470
主流云服务器哪个牌子好 浏览:267
导航怎么看服务器在那 浏览:932
广石化单片机 浏览:281
和教育连接服务器失败是什么原因 浏览:1003
建行app怎么存定期 浏览:830
mc服务器地址183 浏览:73
为什么会解压软件解压失败 浏览:110