导航:首页 > 程序命令 > 程序员数学之线性代数

程序员数学之线性代数

发布时间:2023-12-16 20:22:32

‘壹’ 程序员需要怎样的数学基础

离散数学对程序员来说非常重要,还有组合数学、线性代数、概率论、数论等等,即使你将来不做研究,这些基础知识也能极大地提高你的水平。计算机科学对离散数学的要求很高,建议你先学习前面提到的这些课程,然后学习计算机算法和数据结构,再配合到网上的在线题库做题,过程很艰辛,但是对你的帮助会很大。

推荐书目:

《具体数学》(先学完前面的数学课程,罩衫在水平有一定进步以后再看)

《算法导论》(应该人手一本的好书)

简单来说,学数学的目的,一方面是活跃你的思维;另一方面是为了深入学习算法打基础,设毕老想物数腔一下,同样的问题,普通人的程序要几十分钟甚至几小时几天才能解决出来,甚至根本无法解决,而你精心设计的程序却能在1秒内解决出来,这就是数学的魅力、算法的魅力。

其实,一切取决于你是否想做一个高级程序员。如果你做体力活(其实一般编程别人都认为是体力活),那你可以不学,因为你用不到,但是,你要是做技术上的创新,做个很强的程序员,没有数学的支持,很难。

你既然学习了C,c++,你也知道算法的重要性,同样一个问题,我用13行程序解决了,我的同学居然用了33行,因为他不懂的用数学。你要达到什么高等,取决于你的数学修养。当然,要做一个普通的程序员就不用学习了。要挑战自己,做个好的,优秀的,学习数学吧!

‘贰’ 高等数学、线性代数、离散数学、概率论是程序员的必修课吗有嘛关系如果有用学习的先后次序如何

高等数学,线性代数,概率论是大学必修课,就和英语一样。离散数学是计算机专业的必修课,作为编程,很多时候需要离散数学的相关知识,尤其是数据结构,数据库。离散数学需要线性代数的一点内容。而概率论必须要先学习高等数学,因为概率运算需要微积分运算。
建议学习次序为:高等数学第一、(线性代数【先】、离散数学【后】)概率论

‘叁’ 程序员必备的一些数学基础知识

作为一个标准的程序员,应该有一些基本的数学素养,尤其现在很多人在学习人工智能相关知识,想抓住一波人工智能的机会。很多程序员可能连这样一些基础的数学问题都回答不上来。

作为一个傲娇的程序员,应该要掌握这些数学基础知识,才更有可能码出一个伟大的产品。

向量 向量(vector)是由一组实数组成的有序数组,同时具有大小和方向。一个n维向量a是由n个有序实数组成,表示为 a = [a1, a2, · · · , an]

矩阵

线性映射 矩阵通常表示一个n维线性空间v到m维线性空间w的一个映射f: v -> w

注:为了书写方便, X.T ,表示向量X的转置。 这里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分别表示v,w两个线性空间中的两个向量。A(m,n)是一个 m*n 的矩阵,描述了从v到w的一个线性映射。

转置 将矩阵行列互换。

加法 如果A和B 都为m × n的矩阵,则A和B 的加也是m × n的矩阵,其每个元素是A和B相应元素相加。 [A + B]ij = aij + bij .

乘法 如A是k × m矩阵和B 是m × n矩阵,则乘积AB 是一个k × n的矩阵。

对角矩阵 对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。一个n × n的对角矩阵A满足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}

特征值与特征矢量 如果一个标量λ和一个非零向量v满足 Av = λv, 则λ和v分别称为矩阵A的特征值和特征向量。

矩阵分解 一个矩阵通常可以用一些比较“简单”的矩阵来表示,称为矩阵分解。

奇异值分解 一个m×n的矩阵A的奇异值分解

其中U 和V 分别为m × m和n×n 的正交矩阵,Σ为m × n的对角矩阵,其对角 线上的元素称为奇异值(singular value)。

特征分解 一个n × n的方块矩阵A的特征分解(Eigendecomposition)定义为

其中Q为n × n的方块矩阵,其每一列都为A的特征向量,^为对角阵,其每一 个对角元素为A的特征值。 如果A为对称矩阵,则A可以被分解为

其中Q为正交阵。

导数 对于定义域和值域都是实数域的函数 f : R → R ,若f(x)在点x0 的某个邻域∆x内,极限

存在,则称函数f(x)在点x0 处可导, f'(x0) 称为其导数,或导函数。 若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。连续函数不一定可导,可导函数一定连续。例如函数|x|为连续函数,但在点x = 0处不可导。

加法法则
y = f(x),z = g(x) 则

乘法法则

链式法则 求复合函数导数的一个法则,是在微积分中计算导数的一种常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,则

Logistic函数是一种常用的S形函数,是比利时数学家 Pierre François Verhulst在 1844-1845 年研究种群数量的增长模型时提出命名的,最初作为一种生 态学模型。 Logistic函数定义为:

当参数为 (k = 1, x0 = 0, L = 1) 时,logistic函数称为标准logistic函数,记 为 σ(x) 。

标准logistic函数在机器学习中使用得非常广泛,经常用来将一个实数空间的数映射到(0, 1)区间。标准 logistic 函数的导数为:

softmax函数是将多个标量映射为一个概率分布。对于 K 个标量 x1, · · · , xK , softmax 函数定义为

这样,我们可以将 K 个变量 x1, · · · , xK 转换为一个分布: z1, · · · , zK ,满足

当softmax 函数的输入为K 维向量x时,

其中,1K = [1, · · · , 1]K×1 是K 维的全1向量。其导数为

离散优化和连续优化 :根据输入变量x的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

无约束优化和约束优化 :在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。 ### 优化算法

全局最优和局部最优

海赛矩阵

《运筹学里面有讲》,前面一篇文章计算梯度步长的时候也用到了: 梯度下降算法

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),经常用来求解无约束优化的极小值问题。

梯度下降法的过程如图所示。曲线是等高线(水平集),即函数f为不同常数的集合构成的曲线。红色的箭头指向该点梯度的反方向(梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达函数f 值的局部最优解。

梯度上升法
如果我们要求解一个最大值问题,就需要向梯度正方向迭代进行搜索,逐渐接近函数的局部极大值点,这个过程则被称为梯度上升法。

概率论主要研究大量随机现象中的数量规律,其应用十分广泛,几乎遍及各个领域。

离散随机变量

如果随机变量X 所可能取的值为有限可列举的,有n个有限取值 {x1, · · · , xn}, 则称X 为离散随机变量。要了解X 的统计规律,就必须知道它取每种可能值xi 的概率,即

称为离散型随机变量X 的概率分布或分布,并且满足

常见的离散随机概率分布有:

伯努利分布

二项分布

连续随机变量
与离散随机变量不同,一些随机变量X 的取值是不可列举的,由全部实数 或者由一部分区间组成,比如

则称X 为连续随机变量。

概率密度函数
连续随机变量X 的概率分布一般用概率密度函数 p(x) 来描述。 p(x) 为可积函数,并满足:

均匀分布 若a, b为有限数,[a, b]上的均匀分布的概率密度函数定义为

正态分布 又名高斯分布,是自然界最常见的一种分布,并且具有很多良好的性质,在很多领域都有非常重要的影响力,其概率密度函数为

其中, σ > 0,µ 和 σ 均为常数。若随机变量X 服从一个参数为 µ 和 σ 的概率分布,简记为

累积分布函数
对于一个随机变量X,其累积分布函数是随机变量X 的取值小于等于x的概率。

以连续随机变量X 为例,累积分布函数定义为:

其中p(x)为概率密度函数,标准正态分布的累计分布函数:

随机向量
随机向量是指一组随机变量构成的向量。如果 X1, X2, · · · , Xn 为n个随机变量, 那么称 [X1, X2, · · · , Xn] 为一个 n 维随机向量。一维随机向量称为随机变量。随机向量也分为离散随机向量和连续随机向量。 条件概率分布 对于离散随机向量 (X, Y) ,已知X = x的条件下,随机变量 Y = y 的条件概率为:

对于二维连续随机向量(X, Y ),已知X = x的条件下,随机变量Y = y 的条件概率密度函数为

期望 对于离散变量X,其概率分布为 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定义为

对于连续随机变量X,概率密度函数为p(x),其期望定义为

方差 随机变量X 的方差(variance)用来定义它的概率分布的离散程度,定义为

标准差 随机变量 X 的方差也称为它的二阶矩。X 的根方差或标准差。

协方差 两个连续随机变量X 和Y 的协方差(covariance)用来衡量两个随机变量的分布之间的总体变化性,定义为

协方差经常也用来衡量两个随机变量之间的线性相关性。如果两个随机变量的协方差为0,那么称这两个随机变量是线性不相关。两个随机变量之间没有线性相关性,并非表示它们之间独立的,可能存在某种非线性的函数关系。反之,如果X 与Y 是统计独立的,那么它们之间的协方差一定为0。

随机过程(stochastic process)是一组随机变量Xt 的集合,其中t属于一个索引(index)集合T 。索引集合T 可以定义在时间域或者空间域,但一般为时间域,以实数或正数表示。当t为实数时,随机过程为连续随机过程;当t为整数时,为离散随机过程。日常生活中的很多例子包括股票的波动、语音信号、身高的变化等都可以看作是随机过程。常见的和时间相关的随机过程模型包括贝努力过程、随机游走、马尔可夫过程等。

马尔可夫过程 指一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。

其中X0:t 表示变量集合X0, X1, · · · , Xt,x0:t 为在状态空间中的状态序列。

马尔可夫链 离散时间的马尔可夫过程也称为马尔可夫链(Markov chain)。如果一个马尔可夫链的条件概率

马尔可夫的使用可以看前面一篇写的有意思的文章: 女朋友的心思你能猜得到吗?——马尔可夫链告诉你 随机过程还有高斯过程,比较复杂,这里就不详细说明了。

信息论(information theory)是数学、物理、统计、计算机科学等多个学科的交叉领域。信息论是由 Claude Shannon最早提出的,主要研究信息的量化、存储和通信等方法。在机器学习相关领域,信息论也有着大量的应用。比如特征抽取、统计推断、自然语言处理等。

在信息论中,熵用来衡量一个随机事件的不确定性。假设对一个随机变量X(取值集合为C概率分布为 p(x), x ∈ C )进行编码,自信息I(x)是变量X = x时的信息量或编码长度,定义为 I(x) = − log(p(x)), 那么随机变量X 的平均编码长度,即熵定义为

其中当p(x) = 0时,我们定义0log0 = 0 熵是一个随机变量的平均编码长度,即自信息的数学期望。熵越高,则随机变量的信息越多;熵越低,则信息越少。如果变量X 当且仅当在x时 p(x) = 1 ,则熵为0。也就是说,对于一个确定的信息,其熵为0,信息量也为0。如果其概率分布为一个均匀分布,则熵最大。假设一个随机变量X 有三种可能值x1, x2, x3,不同概率分布对应的熵如下:

联合熵和条件熵 对于两个离散随机变量X 和Y ,假设X 取值集合为X;Y 取值集合为Y,其联合概率分布满足为 p(x, y) ,则X 和Y 的联合熵(Joint Entropy)为

X 和Y 的条件熵为

互信息 互信息(mutual information)是衡量已知一个变量时,另一个变量不确定性的减少程度。两个离散随机变量X 和Y 的互信息定义为

交叉熵和散度 交叉熵 对应分布为p(x)的随机变量,熵H(p)表示其最优编码长度。交叉熵是按照概率分布q 的最优编码对真实分布为p的信息进行编码的长度,定义为

在给定p的情况下,如果q 和p越接近,交叉熵越小;如果q 和p越远,交叉熵就越大。

‘肆’ 学高数 线性代数 复变函数 对计算机专业来说有用吗

有用。

在当下,计算机科学领域里能大量运用高数线代的当属于工程领域。如流体力学弹性力学材料力学中各种工程问题的处理。比较典型的就是使用有限元法处理流体力学中理想流体在粘性流体运动问题。工程中锈钢柔性细管的空拔过程问题。在大量数据矩阵时运用矩阵运算法则简化运算
还有物理学领域中电子设计中复变函数应用较多。如电路理论中解线性方程量子力学中的波函数量子场论,其中Wick's rotation便牵涉到i多体理论中算的积分,很多都要用Resie Theorem,尤其牵涉到波色分布和费米分布(通常推延到Matsubara frequency)还有很多用了复数就可以简化计算的例子
自然语言处理中也有高数线代的大量应用。如如何将不同自然语言使用机器翻译,语音识别。数据通信等。并且这些人工来处理很难,大多需要计算机来辅助。所以计算机专业很有必要学。但是学的精的少些

阅读全文

与程序员数学之线性代数相关的资料

热点内容
安卓手机怎么用cad命令行 浏览:381
2200工程机接收命令瞬间消失 浏览:251
压缩机工艺管是多大的 浏览:312
安卓刷什么系统稳定 浏览:35
程序员写炫酷代码 浏览:930
大话存储pdf 浏览:524
中铭机器人怎么编程 浏览:812
把字母变为数字的加密法 浏览:523
噬血狂袭第三季哪个app能看 浏览:422
江苏螺杆压缩机 浏览:980
android底部弹出对话框 浏览:502
怎么查服务器同行fc号 浏览:1000
什么服务器云鸟最便宜 浏览:221
vs编译器反汇编 浏览:571
程序员直播做项目创业 浏览:403
linux下samba配置 浏览:797
程序员面试银行岗位会有编制吗 浏览:415
ex表怎么加密码保护 浏览:174
小孩上编程课用哪款好 浏览:559
如何制作服务器商店 浏览:736