导航:首页 > 程序命令 > 适合程序员看的杂志

适合程序员看的杂志

发布时间:2024-01-12 11:05:21

① 一个合格的程序员应该读过哪些书

1、《代码大全》 史蒂夫·迈克康奈尔
推荐数:1684

“优秀的编程实践的网络全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky

对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac

Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。

现在,作者将这本经典着作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。

无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。

《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。

2、《程序员修炼之道》
推荐数:1504

对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。

就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel

《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。

无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。

3、《计算机程序的构造和解释》
推荐数:916

就个人而言,这本书目前为止对我影响醉倒的一本编程书。

《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。

然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。

其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。

同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。

一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给着名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。

4、《C程序设计语言》
推荐数:774

这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan

《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。

《C程序设计语言》(第2版新版)原着即为C语言的设计者之一Dennis M.Ritchie和着名的计算机科学家Brian W.Kernighan合着的 一本介绍C语言的权威经典着作。 我们现在见到的大量论述C语言程序设计的教材和专着均以此书为蓝本。 原着第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。

人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。

5、《算法导论》
推荐数:671

《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计……

在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。

我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron

经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。
算法领域的标准教材,全球多所知名大学选用
MIT名师联手铸就,被誉为“计算机算法的圣经”
编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。
6、《重构:改善既有代码的设计》
推荐数:617

《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。

《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。

《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。

我想我不得不推荐《重构》:改进现有代码的设计。—— Martin

我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler

7、《设计模式》
推荐数:617

自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。

就我而言,我认为四人帮编着的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young

8、《人月神话》
推荐数:588

在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的着作。

Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。

该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。

9、《计算机程序设计艺术》
推荐数:542

《计算机程序设计艺术》系列着作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。

《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学着作。 目前Knuth正将毕生精力投入到这部史诗性着作的撰写中。

这是高德纳倾注心血写的一本书。—— Peter Coulton

10、《编译原理》(龙书)
推荐数:462

我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB

② 《代码整洁之道》epub下载在线阅读,求百度网盘云资源

《代码整洁之道》([美] Robert C. Martin)电子书网盘下载免费在线阅读

链接:https://pan..com/s/1iM-wXXGr5aY4JXApiLPwzg

提取码:9es3

书名:代码整洁之道

作者:[美] Robert C. Martin

译者:韩磊

豆瓣评分:8.7

出版社:人民邮电出版社

出版年份:2020-2

页数:387

内容简介:

软件质量,不但依赖架构及项目管理,而且与代码质量紧密相关。这一点,无论是敏捷开发流派还是传统开发流派,都不得不承认。本书提出一种观点:代码质量与其整洁度成正比。干净的代码,既在质量上较为可靠,也为后期维护、升级奠定了良好基础。作为编程领域的佼佼者,本书作者给出了一系列行之有效的整洁代码操作实践。这些实践在本书中体现为一条条规则(或称“启示”),并辅以来自实际项目的正、反两面的范例。只要遵循这些规则,就能编写出干净的代码,从而有效提升代码质量。

本书阅读对象为一切有志于改善代码质量的程序员及技术经理。书中介绍的规则均来自作者多年的实践经验,涵盖从命名到重构的多个编程方面,虽为一“家”之言,然诚有可资借鉴的价值。

作者简介:

作者 | Robert C. Martin

世界级软件开发大师,设计模式和敏捷开发先驱,敏捷联盟首任主席,C++ Report前主编,被后辈程序员尊称为“Bob大叔”。20世纪70年代初成为职业程序员,后创办Object Mentor公司并任总裁。Martin还是一名多产的作家,至今已发表数百篇文章、论文和博客文章。除本书外,还着有《代码整洁之道:程序员的职业素养》《敏捷软件开发:原则、模式和实践》《UML:Java程序员指南》等。

译者 | 韩磊

互联网产品与社区运营专家,技术书籍着译者。曾任CSDN及《程序员》杂志副总经理、总编辑,广东二十一世纪传媒新媒体事业部总经理等职。现任AR初创企业亮风台广州公司总经理。除本书外,还译有《梦断代码》《C#编程风格》等书。与刘韧合着《网络媒体教程》,与戴飞合译《Beginning C# Objects中文版:概念到代码》。

③ 编程猫杂志是什么杂志

编程猫杂志是针对少年儿童编程方面的期刊,是依据少年儿童的特点和现代教育理念设计的一种课程。学习编程推荐去童程童美,童程童美独立开发的专有可视化在线少儿编程教育平台,针对6—18岁青少儿提供线上小班直播授课。

童程童美少儿编程的课程体系还涵盖了乐高,机器人,Scratch,Python,APP手机软件(JAVA),信息学奥赛(C/C++)等等。其中乐高、机器人的学习,属于线下小班课,Scratch和信息学奥数是线上小班课,Python和APP(JAVA)使用的是线上线下双向的学习路线。童程童美的师资由CEO亲自挂帅,打造适合中国孩子的编程课程。韩少云CEO、首席教育官,前亚信公司软件事业部总工程师,软件设计专家、课程设计专家和教师培训专家。别的的老师也均拥有多年的教学经验,以及自己擅长的教学领域。【学少儿编程可以提高孩子逻辑思维、专注力!】

想了解更多关于少儿编程的相关内容,推荐咨询童程童美。童程童美实施5S(整顿、整理、清扫、清洁、素养)管理办法,以加强对环境的长效管理,注重科技素质教育氛围的营造,传递良好的教育理念,正向影响孩子意识,让孩子在成长中心可以舒适学习。【童程童美少儿编程体验课,点击可免费报名试听】

④ 《Windows程序设计》epub下载在线阅读,求百度网盘云资源

《Windows程序设计》(佩措尔德)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1RzM_2TB0AvVAL1RRHdFWkA

提取码:ijkd

书名:Windows程序设计

作者:佩措尔德

译者:方敏

豆瓣评分:9.1

出版社:北京大学出版社

出版年份:2010-9

页数:1114

内容简介:

《Windows程序设计(第5版 珍藏版)》是一本经典的Windows编程圣经,曾经伴随着近50万Windows程序员步入编程殿堂,成长为IT时代的技术精英。

作为Windows开发人员的必备参考,涵盖基础知识和中高级主题,全面地介绍了Windows程序设计所涉及的细枝末节,旨在帮助读者从高屋见瓴的角度,建立完整的知识体系,为以后的职业生涯奠定良好的基础。全书共3部分23章。第1~12章着重介绍基础知识,第13~18章的主题为图形,第19~23章涉及更多高级主题。

《Windows程序设计(第5版 珍藏版)》适合任何层次的Windows程序员阅读和参考,是帮助他们梳理和建立Windows知识体系的理想读物。


点击链接进入英文版:

Programming Windows 5th Edition Book/CD Package

作者简介:

Charles Petzold 从1984年开始编写个人计算机程序,从1985年开始编写Micrososft Windows程序。他在《Microsoft Systems Journal》1986年12月号上发表了第一篇关于Windows程序设计的杂志论文。从1986年到1995年,他为《PC Magazine》撰写“Environments”专栏,给读者介绍了Windows和OS/2程序设计的许多方面。

《Windows程序设计》由微软出版社在1988年首次出版,后来被认为是这方面最好的导论性读本。在1994年5月,Petzold作为仅有的七个人之一(并且是唯一的作家)被《Windows Magazine》和Microsoft公司授予Windows Pioneer奖,以表彰他对Microsoft Windows的成功做出的贡献。

在1999年秋天,微软出版社将出版Charles Petzold 面向普通读者的第一本书。暂时命名为《Code: The Hidden Language of Computer Hardware and Software》,这本书专门介绍数字信息的本质以及计算机处理数字信息的方式。

⑤ 比较着名的电脑杂志都有哪些

1。计算机世界 太多广告,技术少,可以开阔视野.
2。个人电脑 每期针对性太强,长期购买,您将变得非常专业(非IT软技术)
3。电脑报 以前经常看,现在每年买合订本,觉得报刊不如杂志方便
4。电脑爱好者 初学者进步的阶梯
5。程序员 我没有看过,但知道是专业的程序员杂志

⑥ 程序员的开源月刊《HelloGitHub》第 68 期

HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。

这里有实战项目、入门教程、黑 科技 、开源书籍、大厂开源项目等,涵盖多种编程语言 Python、Java、Go、C/C++、Swift...让你在短时间内感受到开源的魅力,对编程产生兴趣!

1、 toybox :该项目将 200 多个常用的 Linux 命令行工具,做成一个可执行文件。从而可以让 Android 这种原本不支持 Linux 命令的系统,也得以用上 ls、find、ps 等命令。还可以用于快速构建最小的 Linux 环境

2、 the_silver_searcher :比 ack 更快的命令行搜索工具。速度快、功能强大、使用简单,支持 Linux、Windows、macOS 操作系统,还能够整合进 Vim 和 Emacs 等编辑器

3、 WindTerm :支持 SSH/Telnet/Serial/Shell/Sftp 的终端工具。虽然该软件完全免费,但部分代码尚未完全开源,对安全敏感的同学可以再观望下

4、 wavefunctioncollapse :基于波函数坍缩 (WFC) 算法,实现的无限城市示例。城市里有房子、楼梯、树木、连接房屋的通道,你可以在城市中自由移动、跳跃、飞行,但不论你怎么移动都找不到尽头,因为这座城市会无限延伸

5、 NETworkManager :管理和解决网络问题的工具。它集成了 IP 和端口扫描、WiFi 分析器、跟踪路由、DNS 查询等工具

6、 ppsspp :能够运行在 Android 和 PC 上的开源 PSP 模拟器

7、 leocad :用来创建虚拟乐高模型的 CAD 工具。适用于 Windows、Linux 和 macOS 系统

8、 csshake :用 CSS 实现抖动效果

9、 MangoDB :真正开源的 MongoDB 替代品。它底层采用 PostgreSQL 作为存储引擎,用 Go 语言实现了 MongoDB 协议,所以几乎兼容所有的 MongoDB 库,迁移起来毫无负担。如果你用不到 MongoDB 的高级功能,还受限于它的开源协议,那么这个项目可作为 MongoDB 的开源替代方案。它才刚刚起步,建议观望一段时间或做足测试再用于生产环境

10、 caddy :用 Go 编写的轻量级 Web 服务器。它相较于 Apache、Nginx 这些知名 Web 服务器,独特点在于提供了编译好的可执行文件,实现了真正的开箱即用。无需任何配置即可拥有免费的 HTTPS、自动把 Markdown 文件转化成 HTML 等人性化的功能。如果是搭建中小型的 Web 服务,它完全够用而且省时省心

11、 croc :可以让任意两台计算机,安全方便地传输文件和文件夹的工具。轻松实现端到端加密的跨平台文件传输,还支持多文件传输、传输中断和恢复等功能

12、 jnativehook :获取键盘和鼠标事件世誉的 Java 库。轻松监听按键、鼠标移动、点击等事件

13、 spider-flow :用流程图的方式编写爬虫的平台。无需写代码就可以快速完成一个简单的爬虫

14、 greenDAO :高性能的 Android ORM 库。拥有体积小、易于使用、支持数据库加密等特点,通过它 Android 开发者可以采用面向对象的方式操作数据库,不需要再手写和拼接 SQL 啦

15、 vue-color-avatar :纯前端实现的矢量风格头像生成网站。可以通过搭配不同的素材,生成个性化头像。该项目使用 Vite + Vue3 开发,能够帮助前端初学者熟悉 Vue3 语法并掌握项目搭建的相关知识

16、 colorfu :自动生顷腔成雀返衫由文字/颜色/图片/纹理元素组成的壁纸

17、 pm2 :Node.js 的进程管理工具。它容易上手操作简单,可以有效地提高 Node.js 程序运行的稳定性,支持自动重启、负载均衡、不停服务重启、性能监控等功能,多用于生产环境中管理、监控 Node.js 进程

18、 automa :通过图形化界面拖拽功能模块,实现浏览器自动操作的扩展工具。轻松实现自动填表、截图、定时执行等操作。让浏览器自动完成预设工作流的插件,从而减少重复性操作提高效率

19、 PyWebIO :快速构建 Web 应用的 Python 工具。通过该项目你可在不写 HTML、CSS、JS 代码的前提下,仅用 Python 快速完成一个包含数据展示、表单的小型 Web 应用页面

20、 pottery :以 Python 的方式操作 Redis 的库。忘记那些 Redis 命令吧,只要你知道如何使用 Python 字典,那么你就会用这个库操作 Redis

21、 zulip :完全开源的企业级即时通讯项目。后端采用 Python 语言实现性能足够强大,功能齐全相当于开源、免费的 Slack,拥有拖拽上传文件、代码高亮、Markdown 语法、应用整合、容易接入的 API 等功能,还支持 Web、PC、iOS 和 Android 主流平台,众多知名企业都在用,能够有效地提高团队沟通和办公效率。同时该项目对新手用户友好,如果你想加入一个不错的 Python 开源项目,推荐你花时间研究下它一定会有所收获

22、 webssh :简单的 SSH 连接服务器的 Python Web 应用。该项目后端采用 Tornado Web 框架和 Python SSH 库 paramiko,前端是 TypeScript 写的命令行前端组件 Xterm.js 实现。整个项目简单还具有实用价值,可作为 Python Web 的实战项目学习

23、 django-debug-toolbar :Django 的调试工具栏。可显示当前请求和响应有关的各种调试信息,包括耗时、SQL、配置、性能等信息

24、 hyperfine :命令行基准测试工具。可用来查看和对比命令的耗时,支持多次运行的统计分析、结果导出等功能

25、 xcode-dev-cleaner :用于清理各种 Xcode 的缓存数据,释放存储空间。注意是清除 Xcode 缓存数据,不是卸载 Xcode 哈

26、 toml :更易读和易于维护的配置文件格式。如果你厌倦了 INI 的局限性、层层嵌套的 JSON 和 YAML 令人心惊胆战的缩进语法,不防给 TOML 一个机会,它支持多种数据类型、抛弃了缩进和嵌套,而且众多流行编程语言都有对应的库。TOML 已经足够成熟,绝对值得一试

27、 waka-readme-stats :自动在 GitHub 个人首页展示编程时长的工具。该项目通过 WakaTime 记录用户在 IDE 的使用时间,统计编程时长和数据,然后采用 GitHub Action 自动获取并动态更新到 GitHub 个人首页。轻而易举地展示自己的编程时长

28、 PathPlanning :常见的路径规划算法集合。项目包含了 Python 代码实现、运行过程动画以及相关论文

29、 howdy :为 Linux 系统提供人脸识别解锁电脑的工具。通过电脑内置的摄像头和红外设备,实现了类似 Windows Hello 风格的身份认证,可用于登陆、锁屏、sudo 等任何需要输入密码的地方

30、 The-Open-Book :开源的电子水墨屏阅读设备。动手能力强的同学可跟着这个项目,从焊电路板开始亲手制作出一个类 Kindle 的 4.2 英寸阅读设备

31、 fl_chart :Flutter 图表库。它支持折线图、条形图、饼图、散点图和雷达图

32、 ugo-compiler-book :《从头开发一个迷你 Go 语言》该书教你从头实现迷你 Go 语言,内容包含了词法解析、语法树构建、函数闭包、接口、CGO 的实现等内容

33、 archbase :教科书《计算机体系结构基础》第三版

34、 spring-in-action-v6-translate :《Spring 实战第 6 版》中文翻译

35、 best_AI_papers_2021 :2021 年必看的人工智能论文列表。该项目不是简单的罗列论文,它不仅包含相关论文的代码、效果展示,还有深入的文章和讲解视频。通过学习这些前沿的人工智能论文,提前了解 AI 在未来更多可能性

36、 AnimeGANv2 :可以将图片和视频转换成漫画风格的工具。采用的是神经风格迁移+生成对抗网络(GAN)的组合,转换速度快

感谢您的阅读,如果觉得内容还不错的话 求赞、求分享 ,您的每一次支持都将让 HelloGitHub 变得更好!

⑦ 程序员一般通过怎样的途径获取行业内的最新信息

我觉得程序员需要掌握最新的行业信息来完善自己的作品,不然很快就会被淘汰掉。

虽然我不是一个专业的程序员,但是我的专业也是计算机,所以,就我个人而言,我一般会去看一些论坛,贴吧,或者是微博,这些都是信息更新最快的地方,总能受益匪浅。

或者是可也关注微信公众号,有些软件开发或者是程序员论坛也会设立微信公众号,也会在第一时间推送最新的信息。还有一些手机app也会有很多行业内最新的信息推送,现在大多数人们都是手机不离手,所以,可以在手机上多下载一些app或者是多关注一些微信公众号,也是获取行业内最新信息的有效途径。

⑧ 《自然》评选改变科学的10个计算机代码项目

从Fortran到arXiv.org,这些计算机编码和平台让生物学、气候科学和物理学等学科的发展达到了真正“日新月异”的速度。

2019年,事件视界望远镜团队让世界首次看到了黑洞的样子。不过,研究人员公布的这张发光环形物体的图像并不是传统的图片,而是经过计算获得的。利用位于美国、墨西哥、智利、西班牙和南极地区的射电望远镜所得到的数据,研究人员进行了数学转换,最终合成了这张标志性的图片。研究团队还发布了实现这一壮举所用的编程代码,并撰文记录这一发现,其他研究者也可以在此基础上进一步加以分析。

这种模式正变得越来越普遍。从天文学到动物学,在现代每一项重大科学发现的背后,都有计算机的参与。美国斯坦福大学的计算生物学家迈克尔·莱维特因“为复杂化学系统创造了多尺度模型”与另两位研究者分享了2013年诺贝尔化学奖,他指出,今天的笔记本电脑内存和时钟速度是他在1967年开始获奖工作时实验室制造的计算机的1万倍。“我们今天确实拥有相当可观的计算能力,”他说,“问题在于,我们仍然需要思考。”

如果没有能够解决研究问题的软件,以及知道如何编写并使用软件的研究人员,一台计算机无论再强大,也是毫无用处的。如今的科学研究从根本上已经与计算机软件联系在一起,后者已经渗透到研究工作的各个方面。近日,《自然》(Nature)杂志将目光投向了幕后,着眼于过去几十年来改变科学研究的关键计算机代码,并列出了其中10个关键的计算机项目。

这台CDC 3600型计算机于1963年交付给位于科罗拉多州博尔德的国家大气研究中心,研究者在Fortran编译器的帮助对其进行了编程

语言先驱:Fortran编译器(1957年)

最初的现代计算机并不容易操作。当时的编程实际上是手工将电线连接成一排排电路来实现的。后来出现了机器语言和汇编语言,允许用户用代码为计算机编程,但这两种语言都需要对计算机的架构有深入的了解,使得许多科学家难以掌握。

20世纪50年代,随着符号语言的发展,特别是由约翰·巴克斯及其团队在加州圣何塞的IBM开发的“公式翻译”语言Fortran,这种情况发生了变化。利用Fortran,用户可以用人类可读的指令来编程,例如x = 3 + 5。然后由编译器将这些指令转换成快速、高效的机器代码。

不过,这一过程仍然很不容易。早期的程序员使用打孔卡来输入代码,而复杂的模拟可能需要数万张打孔卡。尽管如此,新泽西州普林斯顿大学的气候学家真锅淑郎(Syukuro Manabe)还是指出,Fortran让非计算机科学家也能编程,“这是我们第一次能够自己给计算机编程”。他和同事们利用这种语言开发的气候模型是最早取得成功的模型之一。

Fortran发展至今已经到了第八个十年,它仍然广泛应用于气候建模、流体动力学、计算化学等学科,这些学科都涉及到复杂线性代数并需要强大的计算机来快速处理数字。Fortran生成的代码速度很快,而且仍然有很多程序员知道如何编写。古早的Fortran代码库仍然活跃在世界各地的实验室和超级计算机上。“以前的程序员知道他们在做什么,”美国海军研究院的应用数学家和气候模型师弗兰克·吉拉尔多说,“他们非常注重内存,因为他们拥有的内存非常少。”

信号处理器:快速傅立叶变换(1965)

当射电天文学家扫描天空时,他们捕捉到的是随时间变化的复杂信号杂音。为了理解这些无线电波的本质,他们需要看到这些信号作为频率的函数时是什么样的。一种名为“傅里叶变换”的数学过程可以帮到研究人员,但它的效率很低,对于一个大小为N的数据集需要N^2次计算。

1965年,美国数学家詹姆斯·库利和约翰·杜基想出了一种加速该过程的方法。快速傅里叶变换(FFT)通过递归(一种通过重复将问题分解为同类的子问题而解决问题的编程方法)将计算傅里叶变换的问题简化为N log2(N)步。随着N的增加,速度也会提高。对于1000个点,速度提升大约是100倍;100万个点则是5万倍。

这个“发现”实际上是一个再发现,因为德国数学家高斯在1805年就对此进行了研究,但他从未发表过。而詹姆斯·库利和约翰·杜基做到了,他们开启了傅里叶变换在数字信号处理、图像分析、结构生物学等领域的应用,成为应用数学和工程领域的重大事件之一。FFT在代码中的应用已有很多次,近年一个流行的方案是FFTW,被认为是世界上最快的FFT。

保罗·亚当斯是加州劳伦斯伯克利国家实验室分子生物物理学和综合生物成像部门的主任,他回忆称,当他在1995年改进细菌蛋白质凝胶的结构时,即使使用FFT和超级计算机,也需要“很多个小时,甚至数天”的计算。“如果在没有FFT的情况下尝试做这些,我不知道在现实中应该如何做到,”他说,“那可能要花很长时间。”

分子编目:生物数据库(1965年)

数据库是当今科学研究中不可或缺的组成部分,以至于人们很容易忘记它们也是由软件驱动的。过去的几十年中,数据库资源的规模急剧膨胀,影响了许多领域,但或许没有哪个领域的变化会比生物学领域更引人注目。

蛋白质数据库Protein Data Bank拥有超过17万个分子结构的档案,包括这种细菌的“表达子”(expressome),其功能是结合RNA和蛋白质合成的过程。

今天,科学家所用的庞大基因组和蛋白质数据库源于美国物理化学家玛格丽特·戴霍夫的工作,她也是生物信息学领域的先驱。20世纪60年代初,当生物学家们致力于梳理蛋白质的氨基酸序列时,戴霍夫开始整理这些信息,以寻找不同物种之间进化关系的线索。她与三位合着者于1965年发表了《蛋白质序列和结构图谱》,描述了当时已知的65种蛋白质的序列、结构和相似性。 历史 学家布鲁诺·斯特拉瑟在2010年写道,这是第一个“与特定研究问题无关”的数据集,它将数据编码在打孔卡中,这使得扩展数据库和搜索成为可能。

其他“计算机化”的生物数据库紧随其后。蛋白质数据库Protein Data Bank于1971年投入使用,如今详细记录了超过17万个大分子结构。加州大学圣地亚哥分校的进化生物学家拉塞尔·杜利特尔在1981年创建了另一个名为Newat的蛋白质数据库。1982年,美国国立卫生研究院(NIH)与多个机构合作,成立了GenBank数据库,这是一个开放获取的DNA序列数据库。

这些数据库资源在1983年7月证明了其存在价值。当时,由伦敦帝国癌症研究基金会蛋白质生物化学家迈克尔·沃特菲尔德领导的团队,与杜利特尔的团队各自独立报道了一个特殊的人类生长因子序列与一种导致猴子出现癌症的病毒蛋白质之间的相似性。观察结果显示了一种病毒诱发肿瘤机制——通过模仿一种生长因子,病毒会诱导细胞不受控制地生长。美国国家生物技术信息中心(NCBI)前主任詹姆斯·奥斯特尔说:“这一结果让一些对计算机和统计学不感兴趣的生物学家头脑里灵光一闪:我们可以通过比较序列来了解有关癌症的一些情况。”

奥斯特尔还表示,这一发现标志着“客观生物学的到来”。除了设计实验来验证特定的假设,研究人员还可以挖掘公共数据集,寻找那些实际收集数据的人可能从未想到的联系。当不同的数据集连接在一起时,这种力量就会急剧增长。例如,NCBI的程序员在1991年通过Entrez实现了这一点;Entrez是一个可以让研究人员在DNA、蛋白质和文献之间自由检索和比对的工具。

预测领先者:大气环流模式(1969年)

在第二次世界大战结束时,计算机先驱约翰·冯·诺伊曼开始将几年前用于计算弹道轨迹和武器设计的计算机转向天气预测问题。真锅淑郎解释道,在那之前,“天气预报只是经验性的”,即利用经验和直觉来预测接下来会发生什么。相比之下,冯·诺伊曼的团队“试图基于物理定律进行数值天气预测”。

新泽西州普林斯顿的美国国家海洋和大气管理局(NOAA)地球物理流体动力学实验室的建模系统部门负责人Venkatramani Balaji表示,几十年来,人们已经熟知这些方程式。但早期的气象学家无法实际解决这些问题。要做到这一点,需要输入当前的条件,计算它们在短时间内会如何变化,并不断重复。这个过程非常耗时,以至于在天气状况实际出现之前还无法完成数学运算。1922年,数学家刘易斯·弗莱·理查森花了几个月时间计算德国慕尼黑的6小时预报。根据一段 历史 记载,他的结果是“极不准确的”,包括“在任何已知的陆地条件下都不可能发生的”预测。计算机使这个问题变得很容易解决。

20世纪40年代末,冯·诺伊曼在普林斯顿高等研究院建立了天气预报团队。1955年,第二个团队——地球物理流体动力学实验室——开始进行他所谓的“无限预测”,也就是气候建模。

真锅淑郎于1958年加入气候建模团队,开始研究大气模型;他的同事柯克·布莱恩将这一模型应用在海洋研究中。1969年,他们成功将二者结合起来,创造了《自然》杂志在2006年所说的科学计算“里程碑”。

今天的模型可以将地球表面划分为一个个25公里 25公里的正方形,并将大气层划分为数十层。相比之下,真锅淑郎和布莱恩的海洋-大气联合模型划分的面积为500平方公里,将大气分为9个层次,只覆盖了地球的六分之一。尽管如此,Venkatramani Balaji表示,“这个模型做得很好”,使研究团队第一次能够通过计算机预测二氧化碳含量上升的影响。

数字运算机:BLAS(1979年)

科学计算通常涉及到使用向量和矩阵进行相对简单的数学运算,但这样的向量和矩阵实在太多了。但在20世纪70年代,还没有一套普遍认可的计算工具来执行这些运算。因此,从事科学工作的程序员会将时间花在设计高效的代码来进行基本的数学运算,而不是专注于科学问题。

加州劳伦斯利弗莫尔国家实验室的Cray-1超级计算机。在BLAS编程工具于1979年问世之前,并没有线性代数标准可供研究人员在Cray-1超级计算机等机器上工作

编程世界需要一个标准。1979年,这样的标准出现了:基本线性代数程序集(Basic Linear Algebra Subprograms,简称BLAS)。这是一个应用程序接口(API)标准,用以规范发布基础线性代数操作的数值库,如矢量或矩阵乘法。该标准一直发展到1990年,为向量数学和后来矩阵数学定义了数十个基本例程。

美国田纳西大学计算机科学家、BLAS开发团队成员杰克·唐加拉表示,事实上,BLAS把矩阵和向量数学简化成了和加法和减法一样基本的计算单元。

美国德克萨斯大学奥斯汀分校的计算机科学家Robert van de Geijn指出,BLAS“可能是为科学计算定义的最重要的接口”。除了为常用函数提供标准化的名称之外,研究人员还可以确保基于BLAS的代码在任何计算机上以相同方式工作。该标准还使计算机制造商能够优化BLAS的安装启用,以实现在其硬件上的快速操作。

40多年来,BLAS代表了科学计算堆栈的核心,也就是使科学软件运转的代码。美国乔治·华盛顿大学的机械和航空航天工程师洛雷娜·巴尔巴称其为“五层代码中的机械”。而杰克·唐加拉说:“它为我们的计算提供了基础结构。”

显微镜必备:NIH Image(1987年)

20世纪80年代初,程序员韦恩·拉斯班德在马里兰州贝塞斯达的美国国立卫生研究院的脑成像实验室工作。该实验室拥有一台扫描仪,可以对X光片进行数字化处理,但无法在电脑上显示或分析。为此,拉斯班德写了一个程序。

这个程序是专门为一台价值15万美元的PDP-11小型计算机设计的,这是一台安装在架子上的计算机,显然不适合个人使用。然后,在1987年,苹果公司发布了Macintosh II,这是一个更友好、更实惠的选择。拉斯班德说:“在我看来,这显然是一种更好的实验室图像分析系统。”他将软件转移到新的平台上,并重新命名,建立了一个图像分析生态系统。

NIH Image及其后续版本使研究人员能在任何计算机上查看和量化几乎任何图像。该软件系列包括ImageJ,一个拉斯班德为Windows和Linux用户编写的基于Java的版本;以及Fiji,这是ImageJ的分发版,由德国德累斯顿的马克斯普朗克分子细胞生物学和遗传学研究所的Pavel Tomancak团队开发,其中包括关键的插件。“ImageJ无疑是我们所拥有的最基础的工具,”布洛德研究所(由麻省理工学院和哈佛大学联合创立)成像平台的计算生物学家贝丝·契米妮说,“我从来没有和一个使用过显微镜,但没有使用过ImageJ或Fiji的生物学家说过话。”

拉斯班德表示,部分原因可能是这些工具是免费的。但威斯康星大学麦迪逊分校的生物医学工程师Kevin Eliceiri指出,另一个原因是用户可以很容易地根据自己的需求定制工具。自拉斯班德退休后,Kevin Eliceiri的团队一直领导着ImageJ的开发。ImageJ提供了一个看似简单、极简主义的用户界面,自20世纪90年代以来基本上没有改变。然而,由于其内置的宏记录器(允许用户通过记录鼠标点击和菜单选择的序列来保存工作流)、广泛的文件格式兼容性和灵活的插件架构,该工具具有无限的可扩展性。该团队的编程主管柯蒂斯·鲁登表示,有“数以百计的人”为ImageJ贡献了插件。这些新添加的功能极大扩展了研究人员的工具集,例如在视频中跟踪对象或自动识别细胞的功能。

Kevin Eliceiri说:“这个程序的目的不是做到一切或终结一切,而是服务于用户的目标。不像Photoshop和其他程序,ImageJ可以成为你想要的任何东西。”

序列搜索器:BLAST (1990年)

可能没有什么能比把软件名称变成动词更能说明文化的相关性了。提到搜索,你会想到谷歌;而提到遗传学,研究者会立刻想到BLAST。

通过诸如替代、删除、缺失和重排等方式,生物将进化中的改变蚀刻在分子序列中。寻找序列之间的相似性——特别是蛋白质之间的相似性——可以让研究人员发现进化关系,并深入了解基因功能。在迅速膨胀的分子信息数据库中,想要快速而准确地做到这一点并不容易。

玛格丽特·戴霍夫在1978年提供了关键的进展。她设计了一种“点接受突变”矩阵,使研究人员不仅可以根据两种蛋白质序列的相似程度,还可以根据进化距离来为评估它们的亲缘关系。

1985年,弗吉尼亚大学的威廉·皮尔森和NCBI的大卫·利普曼引入了FASTP,这是一种结合了戴霍夫矩阵和快速搜索能力的算法。

数年后,利普曼与NCBI的沃伦·吉什和斯蒂芬·阿特舒尔,宾夕法尼亚州立大学的韦伯·米勒,以及亚利桑那大学的吉恩·迈尔斯一起开发了一种更强大的改进技术:BLAST(Basic Local Alignment Search Tool)。BLAST发布于1990年,将处理快速增长的数据库所需的搜索速度,与提取进化上更为遥远的匹配结果的能力结合起来。与此同时,该工具还可以计算出这些匹配发生的概率。

阿特舒尔表示,计算结果出来得非常快,“你可以输入搜索内容,喝一口咖啡,搜索就完成了。”但更重要的是,BLAST很容易使用。在一个通过邮寄更新数据库的时代,沃伦·吉什建立了一个电子邮件系统,后来又建立了一个基于网络的架构,允许用户在NCBI计算机上远程运行搜索,从而确保搜索结果始终是最新的。

哈佛大学的计算生物学家肖恩·艾迪表示,BLAST系统为当时处于萌芽阶段的基因组生物学领域提供了一个变革性的工具,即一种根据相关基因找出未知基因可能功能的方法。对于各地的测序实验室,它还提供了一个新颖的动词。“它是众多由名词变成动词的例子之一,”艾迪说,“你会说,你正准备BLAST一下你的序列。”

预印本平台:arXiv.org (1991年)

20世纪80年代末,高能物理学家经常将他们已投稿的论文手稿副本邮寄给同行,征求他们的意见——但只发给少数人。物理学家保罗·金斯帕格在2017年写道:“处于食物链较低位置的人依赖于一线研究者的成果,而非精英机构中有抱负的研究人员则往往身处特权圈以外。”

1991年,当时在新墨西哥州洛斯阿拉莫斯国家实验室工作的金斯帕格编写了一个电子邮件自动应答程序,希望建立一个公平的竞争环境。订阅者每天都会收到预印本列表,每一篇都与文章标识符相关联。只需通过一封电子邮件,世界各地的用户就可以从实验室的计算机系统中提交或检索论文,并获得新论文的列表,或按作者或标题进行搜索。

金斯帕格的计划是将论文保留三个月,并将内容限制在高能物理学界。但一位同事说服他无限期地保留这些文章。他说:“就在那一刻,它从布告栏变成了档案馆。”于是,论文开始从比各个领域如潮水般涌来。1993年,金斯伯格将这个系统迁移到互联网上,并在1998年将其命名为arXiv.org,沿用至今。

arXiv成立已近30年,拥有约180万份预印本,全部免费提供,而且每月有超过1.5万份论文提交,下载量达3000万次。十年前,《自然-光子学》(Nature Photonics)的编辑在评论arXiv创立20周年时写道:“不难看出为什么arXiv的服务会如此受欢迎,这个系统让研究人员能快速而方便地插上旗帜,显示他们所做的工作,同时避免投稿传统同行评议期刊时的麻烦和时间成本。”

arXiv网站的成功也促进了生物学、医学、 社会 学和其他学科同类预印本网站的繁荣。在如今已出版的数万份关于新冠病毒的预印本中就可以看到这种影响。“很高兴看到30年前在粒子物理学界之外被认为是异端的方法,现在被普遍认为是平淡无奇和自然而然的,”金斯伯格说,“从这个意义上说,它就像一个成功的研究项目。”

数据浏览器:IPython Notebook (2011年)

2001年,费尔南多·佩雷斯还是一位希望“寻找拖延症”的研究生,当时他决定采用Python的一个核心组件。

Python是一种解释型语言,这意味着程序是逐行执行的。程序员可以使用一种称为“读取-评估-打印循环”(read–evaluate–print loop,简称REPL)的计算调用和响应工具,在其中输入代码,然后由解释器执行代码。REPL允许快速 探索 和迭代,但佩雷斯指出,Python的REPL并不是为科学目的而构建的。例如,它不允许用户方便地预加载代码模块,也不允许打开数据可视化。因此,佩雷斯自己编写了另一个版本。

结果就是IPython的诞生,这是一个“交互式”Python解释器,由佩雷斯在2001年12月推出,共有259行代码。十年后,佩雷斯与物理学家布莱恩·格兰杰和数学家埃文·帕特森合作,将该工具迁移到web浏览器上,推出了IPython Notebook,开启了一场数据科学革命。

与其他计算型Notebook一样,IPython Notebook将代码、结果、图形和文本合并在一个文档中。但与其他类似项目不同的是,IPython Notebook是开源的,邀请了大量开发者社区的参与其中。而且它支持Python,一种很受科学家欢迎的语言。2014年,IPython演变为Jupyter,支持大约100种语言,允许用户在远程超级计算机上 探索 数据,就像在自己的笔记本电脑上一样轻松。

《自然》杂志在2018年写道:“对于数据科学家,Jupyter实际上已经成为一个标准。”当时,在GitHub代码共享平台上有250万个Jupyter Notebook;如今,这一数字已经发展到1000万个,在2016年引力波的发现,以及2019年的黑洞成像工作中,它们都发挥了重要的作用。佩雷斯说:“我们对这些项目做出了很小的贡献,这是非常值得的。”

快速学习器:AlexNet(2012年)

人工智能有两种类型。一种是使用编码规则,另一种则通过模拟大脑的神经结构来让计算机“学习”。加拿大多伦多大学的计算机科学家杰弗里•辛顿表示,几十年来,人工智能研究人员一直认为后者是“一派胡言”。但在2012年,他的研究生亚力克斯·克里泽夫斯基和伊尔亚·苏茨克维证明了事实并非如此。

在一年一度的ImageNet比赛中,研究人员被要求在一个包含100万张日常物体图像的数据库中训练人工智能,然后在一个单独图像集上测试生成的算法。辛顿表示,当时最好的算法错误分类了大约四分之一的图像。克里泽夫斯基和苏茨克维的AlexNet是一种基于神经网络的“深度学习”算法,它将错误率降低到了16%。辛顿说:“我们基本上把错误率减半了,或者说几乎减半了。”

辛顿还指出,该团队在2012年的成功反映了足够大的训练数据集与出色的编程,以及新出现的图形处理单元的强大能力的结合。图形处理单元是最初设计用来加速计算机视频性能的处理器。“突然之间,我们可以将(算法)运行速度提高30倍,”他说,“或者说,学习多达30倍的数据。”

真正的算法突破实际上发生在三年前,当时辛顿的实验室创建了一个神经网络,可以比经过几十年改进的传统人工智能更准确地识别语音。“只是稍微好一点,”辛顿说,“但这已经预示了某些东西。”

这些成功预示着深度学习在实验室研究、临床医学和其他领域的崛起。通过人工智能的深度学习,手机能够理解语音查询,图像分析工具能够很容易地在显微照片中识别出细胞;这就是为什么AlexNet会成为众多从根本上改变科学,也改变世界的工具之一。(任天)

阅读全文

与适合程序员看的杂志相关的资料

热点内容
ie文件夹禁止访问 浏览:543
百川互联网程序员 浏览:783
linuxpython解释器 浏览:665
兴安得力软件加密狗 浏览:490
智能网络摄像头加密 浏览:574
软件毕业程序员培训 浏览:652
安卓陀螺仪低怎么办 浏览:247
一级建造师复习题集pdf 浏览:903
法理学pdf海默 浏览:390
服务器内存储器是用什么的 浏览:819
微帮同城分类信息源码 浏览:808
安卓系统ad是什么 浏览:471
python输出中不加占位符 浏览:596
linux文件夹权限控制 浏览:730
雅虎邮箱怎么加密码 浏览:819
为什么安卓手机登录不了苹果账号 浏览:537
如何复制usb加密狗 浏览:801
哪个app看你微笑时很美 浏览:908
mac启动命令 浏览:604
ngc服务器是什么的简称 浏览:75