导航:首页 > 程序命令 > hadoop属于dml命令的是

hadoop属于dml命令的是

发布时间:2024-11-03 19:41:09

❶ sql语言是什么语言

SQL语言分为五大类:
DDL(数据定义语言) - Create、Alter、Drop 这些语句自动提交,无需用Commit提交。(Data Definition Language)
DQL(数据查询语言) - Select 查询语句不存在提交问题。
DML(数据操纵语言) - Insert、Update、Delete 这些语句需要Commit才能提交。(Data Manipulation Language)
DTL(事务控制语言) - Commit、Rollback 事务提交与回滚语句。
DCL(数据控制语言) - Grant、Revoke 授予权限与回收权限语句。

❷ 以道大数据课程体系都讲什么

大数据技术在如今应用非常广泛,许多想入行学习大数据培训的童鞋不知从何学起,从哪儿开始学首先要根据你的基本情况而定,如果你是零基础的也不需要担心,先从基础开始学起就好了,接下来学习基础java开始、数据结构、关系型数据库、linux系统操作,夯实基础之后,再进入大数据的学习,例如:hadoop离线分析、Storm实时计算、spark内存计算的学习,以道教育大数据课程体系可以如下:
第一阶段 WEB 开发基础
HTML基础
1、Html基本介绍
2、HTML语法规范
3、基本标签介绍
4、HTML编辑器/文本文档/WebStrom/elipse
5、HTML元素和属性
6、基本的HTML元素
6.1 标题
6.2 段落
6.3 样式和style属性
6.3 链接 a
6.4 图像 img
6.5 表格 table
6.6 列表 ul/ol/dl
7、 HTML注释
8、表单介绍
9、Table标签
10、DIV布局介绍
11、HTML列表详解
HTML布局和Bootstrap
1、 HTML块元素(block)和行内元素(inline)
2、使用div实现网页布局
3、响应式WEB设计(Responsive Web Design)
4、使用bootstrap实现响应式布局
HTML表单元素
1、HTML表单 form
2、HTML表单元素
3、 HTML input的类型 type
4、 Html input的属性
CSS基础
1、CSS简介及基本语法
2、在HTML文档中使用CSS
3、CSS样式
4、CSS选择器
5、盒子模型
6、布局及定位
CSS高级/CSS3
1、尺寸和对齐
2、分类(clear/cursor/display/float/position/visibility)
3、导航栏
4、图片库
5、图片透明
6、媒介类型 @media
7、CSS3
8、CSS3动画效果
JavaScript基础
1、JavaScript简介
2、基本语法规则
3、在HTML文档中使用JS
4、JS变量
5、JS数据类型
6、JS函数
7、JS运算符
8、流程控制
9、JS错误和调试
JavaScript对象和作用域
1、数字 Number
2、字符串String
3、日期 Date
4、数组
5、数学 Math
6、DOM对象和事件
7、BOM对象
8、Window对象
9、作用域和作用域链
10、JSON
Javascript库
1、Jquery
2、Prototype
3、Ext Js
Jquery
1、Jquery基本语法
2、Jquery选择器
3、Jquery事件
4、Jquery选择器
5、Jquery效果和动画
6、使用Jquery操作HTML和DOM
7、Jquery遍历
8、Jquery封装函数
9、Jquery案例
表单验证和Jquery Validate
1、用Js对HTML表单进行验证
2、Jquery Validata基本用法
3、默认校验规则和提示信息
4、debug和ignore
5、更改错误信息显示位置和样式
6、全部校验通过后的执行函数
7、修改验证触发方式
8、异步验证
9、自定义校验方法
10、radio 和 checkbox、select 的验证
Java基础
1、关于Java
2、Java运行机制
3、第一个Java程序,注释
4、Javac,Java,Javadoc等命令
5、标识符与关键字
6、变量的声明,初始化与应用
7、变量的作用域
8、变量重名
9、基本数据类型
10、类型转换与类型提升
11、各种数据类型使用细节
12、转义序列
13、各种运算符的使用
流程控制
1、选择控制语句if-else
2、选择控制语句switch-case
3、循环控制语句while
4、循环控制语句do-while
5、循环控制语句for与增强型for
6、break,continue,return
7、循环标签
8、数组的声明与初始化
9、数组内存空间分配
10、栈与堆内存
11、二维(多维)数组
12、Arrays类的相关方法
13、main方法命令行参数
面向对象
1、面向对象的基本思想
2、类与对象
3、成员变量与默认值
4、方法的声明,调用
5、参数传递和内存图
6、方法重载的概念
7、调用原则与重载的优势
8、构造器声明与默认构造器
9、构造器重载
10、this关键字的使用
11、this调用构造器原则
12、实例变量初始化方式
13、可变参数方法
访问权限控制
1、包 package和库
2、访问权限修饰符private/protected/public/包访问权限
3、类的访问权限
4、抽象类和抽象方法
5、接口和实现
6、解耦
7、Java的多重继承
8、通过继承来扩展接口
错误和异常处理
1、概念:错误和异常
2、基本异常
3、捕获异常 catch
4、创建自定义异常
5、捕获所有异常
6、Java标准异常
7、使用finally进行清理
8、异常的限制
9、构造器
10、异常匹配
11、异常使用指南
数据库基础(MySQL)
数据库基础(MySQL)
JDBC
1、Jdbc基本概念
2、使用Jdbc连接数据库
3、使用Jdbc进行crud操作
4、使用Jdbc进行多表操作
5、Jdbc驱动类型
6、Jdbc异常和批量处理
7、Jdbc储存过程
Servlet和JSP
1、Servlet简介
2、Request对象
3、Response对象
4、转发和重定向
5、使用Servlet完成Crud
6、Session和Coolie简介
7、ServletContext和Jsp
8、El和Jstl的使用
Ajax
1、什么是Ajax
2、XMLHttpRequest对象(XHR)
3、XHR请求
4、XHR响应
5、readystate/onreadystatechange
6、Jquery Ajax
7、JSON
8、案例:对用户名是否可用进行服务器端校验
综合案例
1、项目开发一般流程介绍
2、模块化和分层
3、DButils
4、QueryRunner
5、ResultSetHandle
6、案例:用户登录/注册,从前端到后端
第二阶段 Java SE
访问权限和继承
1、包的声明与使用
2、import与import static
3、访问权限修饰符
4、类的封装性
5、static(静态成员变量)
6、final(修饰变量,方法)
7、静态成员变量初始化方式
8、类的继承与成员继承
9、super的使用
10、调用父类构造器
11、方法的重写与变量隐藏
12、继承实现多态和类型转换
13、instanceof
抽象类与接口
1、抽象类
2、抽象方法
3、继承抽象类
4、抽象类与多态
5、接口的成员
6、静态方法与默认方法
7、静态成员类
8、实例成员类
9、局部类
10、匿名类
11、eclipse的使用与调试
12、内部类对外围类的访问关系
13、内部类的命名
Lambda表达式与常用类
1、函数式接口
2、Lambda表达式概念
3、Lambda表达式应用场合
4、使用案例
5、方法引用
6、枚举类型(编译器的处理)
7、包装类型(自动拆箱与封箱)
8、String方法
9、常量池机制
10、String讲解
11、StringBuilder讲解
12、Math,Date使用
13、Calendars使用
异常处理与泛型
1、异常分类
2、try-catch-finally
3、try-with-resources
4、多重捕获multi-catch
5、throw与throws
6、自定义异常和优势
7、泛型背景与优势
8、参数化类型与原生类型
9、类型推断
10、参数化类型与数组的差异
11、类型通配符
12、自定义泛型类和类型擦出
13、泛型方法重载与重写
集合
1 、常用数据结构
2 、Collection接口
3 、List与Set接口
4 、SortedSet与NavigableSet
5 、相关接口的实现类
6 、Comparable与Comparator
7、Queue接口
8 、Deque接口
9 、Map接口
10、NavigableMap
11、相关接口的实现类
12、流操作(聚合操作)
13、Collections类的使用
I/O流与反射
1 、File类的使用
2 、字节流
3 、字符流
4 、缓存流
5 、转换流
6 、数据流
7、对象流
8、类加载,链接与初始化
9 、ClassLoader的使用
10、Class类的使用
11、通过反射调用构造器
12、安全管理器
网络编程模型与多线程
1、进程与线程
2、创建线程的方式
3、线程的相关方法
4、线程同步
5、线程死锁
6、线程协作操作
7、计算机网络(IP与端口)
8、TCP协议与UDP协议
9、URL的相关方法
10、访问网络资源
11、TCP协议通讯
12、UDP协议通讯
13、广播
SSM-Spring
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.IOC
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.AOP
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.Mybatis
1.MyBatis简介
2.MyBatis配置文件
3.用MyBatis完成CRUD
4.ResultMap的使用
5.MyBatis关联查询
6.动态SQL
7.MyBatis缓冲
8.MyBatis-Generator
Socket编程
1.网络通信和协议
2.关于Socket
3.Java Socket
4.Socket类型
5.Socket函数
6.WebSocket
7.WebSocket/Spring MVC/WebSocket Ajax
IO/异步
window对象
全局作用域
窗口关系及框架
窗口位置和大小
打开窗口
间歇调用和超时调用(灵活运用)
系统对话框
location对象
navigator对象
screen对象
history对象
NIO/AIO
1.网络编程模型
2.BIO/NIO/AIO
3.同步阻塞
4.同步非阻塞
5.异步阻塞
6.异步非阻塞
7.NIO与AIO基本操作
8.高性能IO设计模式
第三阶段 Java 主流框架
MyBatis
1.mybatis框架原理分析
2.mybatis框架入门程序编写
3.mybatis和hibernate的本质区别和应用场景
4.mybatis开发方法
5.SqlMapConfig配置文件讲解
6.输入映射-pojo包装类型的定义与实现
7.输出映射-resultType、resultMap
8.动态sql
9.订单商品数据模型分析
10.高级映射的使用
11.查询缓存之一级缓存、二级缓存
12.mybatis与spring整合
13. mybatis逆向工程自动生成代码
Spring/Spring MVC
1. springmvc架构介绍
2. springmvc入门程序
3. spring与mybatis整合
4. springmvc注解开发—商品修改功能分析
5. springmvc注解开发—RequestMapping注解
6. springmvc注解开发—Controller方法返回值
7. springmvc注解开发—springmvc参数绑定过程分析
8. springmvc注解开发—springmvc参数绑定实例讲解
9. springmvc与struts2的区别
10. springmvc异常处理
11. springmvc上传图片
12. springmvc实现json交互
13. springmvc对RESTful支持
14. springmvc拦截器
第四阶段 关系型数据库/MySQL/NoSQL
SQL基础
1.SQL及主流产品
2.MySQL的下载与安装(sinux/windows)
3.MySql的基本配置/配置文件
4.基本的SQL操作 DDL
5.基本的SQL操作 DML
6.基本的SQL操作 DCL
7.MySQL客户端工具
8.MySQL帮助文档
MySQL数据类型和运算符
1 数值类型
2 日期时间类型
3 字符串类型
4 CHAR 和 VARCHAR 类型
5 BINARY 和 VARBINARY 类型
6 ENUM 类型
7 SET 类型
8 算术运算符
9 比较运算符
10 逻辑运算符
11 位运算
12 运算符的优先级
MySQL函数
1 字符串函数
2 数值函数
3 日期和时间函数
4 流程函数
5 其他常用函数
MySQL存储引擎
1.MySQL支持的存储引擎及其特性
2.MyISAM
3.InnoDB
4.选择合适的存储引擎
选择合适的数据类型
1 CHAR 与 VARCHAR
2 TEXT 与 BLOB
3 浮点数与定点数
4 日期类型选择
字符集
1 字符集概述
2 Unicode字符集
3 汉字及一些常见字符集
4 选择合适的字符集
5 MySQL 支持的字符集
6 MySQL 字符集的设置 .
索引的设计和使用
1.什么是索引
2.索引的类型
3.索引的数据结构 BTree B+Tree Hash
4.索引的存储
5.MySQL索引
6.查看索引的使用情况
7.索引设计原则
视图/存储过程/函数/触发器
1. 什么是视图
2. 视图操作
3. 什么是存储过程
4. 存储过程操作
5. 什么是函数
6. 函数的相关操作
7. 触发器
事务控制/锁
1. 什么是事务
2. 事务控制
3. 分布式事务
4. 锁/表锁/行锁
5. InnoDB 行锁争用
6. InnoDB 的行锁模式及加锁方法7
7 InnoDB 行锁实现方式7
8 间隙锁(Next-Key 锁)
9 恢复和复制的需要,对 InnoDB 锁机制的影响
10 InnoDB 在不同隔离级别下的一致性读及锁的差异
11 表锁
12 死锁
SQL Mode和安全问题
1. 关于SQL Mode
2. MySQL中的SQL Mode
3. SQL Mode和迁移
4. SQL 注入
5. 开发过程中如何避免SQL注入
SQL优化
1.通过 show status 命令了解各种 SQL 的执行频率
2. 定位执行效率较低的 SQL 语句
3. 通过 EXPLAIN 分析低效 SQL 的执行计划
4. 确定问题并采取相应的优化措施
5. 索引问题
6.定期分析表和检查表
7.定期优化表
8.常用 SQL 的优化
MySQL数据库对象优化
1. 优化表的数据类型
2 散列化
3 逆规范化
4 使用中间表提高统计查询速度
5. 影响MySQL性能的重要参数
6. 磁盘I/O对MySQL性能的影响
7. 使用连接池
8. 减少MySQL连接次数
9. MySQL负载均衡
MySQL集群
MySQL管理和维护
MemCache
Redis
在Java项目中使用MemCache和Redis
第五阶段:操作系统/Linux、云架构
Linux安装与配置
1、安装Linux至硬盘
2、获取信息和搜索应用程序
3、进阶:修复受损的Grub
4、关于超级用户root
5、依赖发行版本的系统管理工具
6、关于硬件驱动程序
7、进阶:配置Grub
系统管理与目录管理
1、Shell基本命令
2、使用命令行补全和通配符
3、find命令、locate命令
4、查找特定程序:whereis
5、Linux文件系统的架构
6、移动、复制和删除
7、文件和目录的权限
8、文件类型与输入输出
9、vmware介绍与安装使用
10、网络管理、分区挂载
用户与用户组管理
1、软件包管理
2、磁盘管理
3、高级硬盘管理RAID和LVM
4、进阶:备份你的工作和系统
5、用户与用户组基础
6、管理、查看、切换用户
7、/etc/...文件
8、进程管理
9、linux VI编辑器,awk,cut,grep,sed,find,unique等
Shell编程
1、 SHELL变量
2、传递参数
3、数组与运算符
4、SHELL的各类命令
5、SHELL流程控制
6、SHELL函数
7、SHELL输入/输出重定向
8、SHELL文件包含
服务器配置
1、系统引导
2、管理守护进程
3、通过xinetd启动SSH服务
4、配置inetd
5、Tomcat安装与配置
6、MySql安装与配置
7、部署项目到Linux
第六阶段:Hadoop生态系统
Hadoop基础
1、大数据概论
2、 Google与Hadoop模块
3、Hadoop生态系统
4、Hadoop常用项目介绍
5、Hadoop环境安装配置
6、Hadoop安装模式
7、Hadoop配置文件
HDFS分布式文件系统
1、认识HDFS及其HDFS架构
2、Hadoop的RPC机制
3、HDFS的HA机制
4、HDFS的Federation机制
5、 Hadoop文件系统的访问
6、JavaAPI接口与维护HDFS
7、HDFS权限管理
8、hadoop伪分布式
Hadoop文件I/O详解
1、Hadoop文件的数据结构
2、 HDFS数据完整性
3、文件序列化
4、Hadoop的Writable类型
5、Hadoop支持的压缩格式
6、Hadoop中编码器和解码器
7、 gzip、LZO和Snappy比较
8、HDFS使用shell+Java API
MapRece工作原理
1、MapRece函数式编程概念
2、 MapRece框架结构
3、MapRece运行原理
4、Shuffle阶段和Sort阶段
5、任务的执行与作业调度器
6、自定义Hadoop调度器
7、 异步编程模型
8、YARN架构及其工作流程
MapRece编程
1、WordCount案例分析
2、输入格式与输出格式
3、压缩格式与MapRece优化
4、辅助类与Streaming接口
5、MapRece二次排序
6、MapRece中的Join算法
7、从MySQL读写数据
8、Hadoop系统调优
Hive数据仓库工具
1、Hive工作原理、类型及特点
2、Hive架构及其文件格式
3、Hive操作及Hive复合类型
4、Hive的JOIN详解
5、Hive优化策略
6、Hive内置操作符与函数
7、Hive用户自定义函数接口
8、Hive的权限控制
Hive深入解读
1 、安装部署Sqoop
2、Sqoop数据迁移
3、Sqoop使用案例
4、深入了解数据库导入
5、导出与事务
6、导出与SequenceFile
7、Azkaban执行工作流
Sqoop与Oozie
1 、安装部署Sqoop
2、Sqoop数据迁移
3、Sqoop使用案例
4、深入了解数据库导入
5、导出与事务
6、导出与SequenceFile
7、Azkaban执行工作流
Zookeeper详解
1、Zookeeper简介
2、Zookeeper的下载和部署
3、Zookeeper的配置与运行
4、Zookeeper的本地模式实例
5、Zookeeper的数据模型
6、Zookeeper命令行操作范例
7、storm在Zookeeper目录结构
NoSQL、HBase
1、HBase的特点
2、HBase访问接口
3、HBase存储结构与格式
4、HBase设计
5、关键算法和流程
6、HBase安装
7、HBase的SHELL操作
8、HBase集群搭建
第七阶段:Spark生态系统
Spark
1.什么是Spark
2.Spark大数据处理框架
3.Spark的特点与应用场景
4.Spark SQL原理和实践
5.Spark Streaming原理和实践
6.GraphX SparkR入门
7.Spark的监控和调优
Spark部署和运行
1.WordCount准备开发环境
2.MapRece编程接口体系结构
3.MapRece通信协议
4.导入Hadoop的JAR文件
5.MapRece代码的实现
6.打包、部署和运行
7.打包成JAR文件
Spark程序开发
1、启动Spark Shell
2、加载text文件
3、RDD操作及其应用
4、RDD缓存
5、构建Eclipse开发环境
6、构建IntelliJ IDEA开发环境
7、创建SparkContext对象
8、编写编译并提交应用程序
Spark编程模型
1、RDD特征与依赖
2、集合(数组)创建RDD
3、存储创建RDD
4、RDD转换 执行 控制操作
5、广播变量
6、累加器
作业执行解析
1、Spark组件
2、RDD视图与DAG图
3、基于Standalone模式的Spark架构
4、基于YARN模式的Spark架构
5、作业事件流和调度分析
6、构建应用程序运行时环境
7、应用程序转换成DAG
Spark SQL与DataFrame
1、Spark SQL架构特性
2、DataFrame和RDD的区别
3、创建操作DataFrame
4、RDD转化为DataFrame
5、加载保存操作与Hive表
6、Parquet文件JSON数据集
7、分布式的SQL Engine
8、性能调优 数据类型
深入Spark Streaming
1、Spark Streaming工作原理
2、DStream编程模型
3、Input DStream
4、DStream转换 状态 输出
5、优化运行时间及内存使用
6、文件输入源
7、基于Receiver的输入源
8、输出操作
Spark MLlib与机器学习
1、机器学习分类级算法
2、Spark MLlib库
3、MLlib数据类型
4、MLlib的算法库与实例
5、ML库主要概念
6、算法库与实例
GraphX与SparkR
1、Spark GraphX架构
2、GraphX编程与常用图算法
3、GraphX应用场景
4、SparkR的工作原理
5、R语言与其他语言的通信
6、SparkR的运行与应用
7、R的DataFrame操作方法
8、SparkR的DataFrame
Scala编程开发
1、Scala语法基础
2、idea工具安装
3、maven工具配置
4、条件结构、循环、高级for循环
5、数组、映射、元组
6、类、样例类、对象、伴生对象
7、高阶函数与函数式编程
Scala进阶
1、 柯里化、闭包
2、模式匹配、偏函数
3、类型参数
4、协变与逆变
5、隐式转换、隐式参数、隐式值
6、Actor机制
7、高级项目案例
Python编程
1、Python编程介绍
2、Python的基本语法
3、Python开发环境搭建
4、Pyhton开发Spark应用程序
第八阶段:Storm生态系统
storm简介与基本知识
1、storm的诞生诞生与成长
2、storm的优势与应用
3、storm基本知识概念和配置
4、序列化与容错机制
5、可靠性机制—保证消息处理
6、storm开发环境与生产环境
7、storm拓扑的并行度
8、storm命令行客户端
Storm拓扑与组件详解
1、流分组和拓扑运行
2、拓扑的常见模式
3、本地模式与stormsub的对比
4、 使用非jvm语言操作storm
5、hook、组件基本接口
6、基本抽象类
7、事务接口
8、组件之间的相互关系
spout详解 与bolt详解
1、spout获取数据的方式
2、常用的spout
3、学习编写spout类
4、bolt概述
5、可靠的与不可靠的bolt
6、复合流与复合anchoring
7、 使用其他语言定义bolt
8、学习编写bolt类
storm安装与集群搭建
1、storm集群安装步骤与准备
2、本地模式storm配置命令
3、配置hosts文件、安装jdk
4、zookeeper集群的搭建
5、部署节点
6、storm集群的搭建
7、zookeeper应用案例
8、Hadoop高可用集群搭建
Kafka
1、Kafka介绍和安装
2、整合Flume
3、Kafka API
4、Kafka底层实现原理
5、Kafka的消息处理机制
6、数据传输的事务定义
7、Kafka的存储策略
Flume
1、Flume介绍和安装
2、Flume Source讲解
3、Flume Channel讲解
4、Flume Sink讲解
5、flume部署种类、流配置
6、单一代理、多代理说明
7、flume selector相关配置
Redis
1、Redis介绍和安装、配置
2、Redis数据类型
3、Redis键、字符串、哈希
4、Redis列表与集合
5、Redis事务和脚本
6、Redis数据备份与恢复
7、Redis的SHELL操作

❸ 大数据分析应该掌握哪些基础知识

Java基础语法

· 分支结构if/switch

· 循环结构for/while/do while

· 方法声明和调用

· 方法重载

· 数组的使用

· 命令行参数、可变参数

IDEA

· IDEA常用设置、常用快捷键

· 自定义模板

· 关联Tomcat

· Web项目案例实操

面向对象编程

· 封装、继承、多态、构造器、包

· 异常处理机制

· 抽象类、接口、内部类

· 常有基础API、集合List/Set/Map

· 泛型、线程的创建和启动

· 深入集合源码分析、常见数据结构解析

· 线程的安全、同步和通信、IO流体系

· 反射、类的加载机制、网络编程

Java8/9/10/11新特性

· Lambda表达式、方法引用

· 构造器引用、StreamAPI

· jShell(JShell)命令

· 接口的私有方法、Optional加强

· 局部变量的类型推断

· 更简化的编译运行程序等

MySQL

· DML语言、DDL语言、DCL语言

· 分组查询、Join查询、子查询、Union查询、函数

· 流程控制语句、事务的特点、事务的隔离级别等

JDBC

· 使用JDBC完成数据库增删改查操作

· 批处理的操作

· 数据库连接池的原理及应用

· 常见数据库连接池C3P0、DBCP、Druid等

Maven

· Maven环境搭建

· 本地仓库&中央仓库

· 创建Web工程

· 自动部署

· 持续继承

· 持续部署

Linux

· VI/VIM编辑器

· 系统管理操作&远程登录

· 常用命令

· 软件包管理&企业真题

Shell编程

· 自定义变量与特殊变量

· 运算符

· 条件判断

· 流程控制

· 系统函数&自定义函数

· 常用工具命令

· 面试真题

Hadoop

· Hadoop生态介绍

· Hadoop运行模式

· 源码编译

· HDFS文件系统底层详解

· DN&NN工作机制

· HDFS的API操作

· MapRece框架原理

· 数据压缩

· Yarn工作机制

· MapRece案例详解

· Hadoop参数调优

· HDFS存储多目录

· 多磁盘数据均衡

· LZO压缩

· Hadoop基准测试

Zookeeper

· Zookeeper数据结果

· 内部原理

· 选举机制

· Stat结构体

· 监听器

· 分布式安装部署

· API操作

· 实战案例

· 面试真题

· 启动停止脚本

HA+新特性

· HDFS-HA集群配置

Hive

· Hive架构原理

· 安装部署

· 远程连接

· 常见命令及基本数据类型

· DML数据操作

· 查询语句

· Join&排序

· 分桶&函数

· 压缩&存储

· 企业级调优

· 实战案例

· 面试真题

Flume

· Flume架构

· Agent内部原理

· 事务

· 安装部署

· 实战案例

· 自定义Source

· 自定义Sink

· Ganglia监控

Kafka

· 消息队列

· Kafka架构

· 集群部署

· 命令行操作

· 工作流程分析

· 分区分配策略

· 数据写入流程

· 存储策略

· 高阶API

· 低级API

· 拦截器

· 监控

· 高可靠性存储

· 数据可靠性和持久性保证

· ISR机制

· Kafka压测

· 机器数量计算

· 分区数计算

· 启动停止脚本

DataX

· 安装

· 原理

· 数据一致性

· 空值处理

· LZO压缩处理

Scala

· Scala基础入门

· 函数式编程

· 数据结构

· 面向对象编程

· 模式匹配

· 高阶函数

· 特质

· 注解&类型参数

· 隐式转换

· 高级类型

· 案例实操

Spark Core

· 安装部署

· RDD概述

· 编程模型

· 持久化&检查点机制

· DAG

· 算子详解

· RDD编程进阶

· 累加器&广播变量

Spark SQL

· SparkSQL

· DataFrame

· DataSet

· 自定义UDF&UDAF函数

Spark Streaming

· SparkStreaming

· 背压机制原理

· Receiver和Direct模式原理

· Window原理及案例实操

· 7x24 不间断运行&性能考量

Spark内核&优化

· 内核源码详解

· 优化详解

Hbase

· Hbase原理及架构

· 数据读写流程

· API使用

· 与Hive和Sqoop集成

· 企业级调优

Presto

· Presto的安装部署

· 使用Presto执行数仓项目的即席查询模块

Ranger2.0

· 权限管理工具Ranger的安装和使用

Azkaban3.0

· 任务调度工具Azkaban3.0的安装部署

· 使用Azkaban进行项目任务调度,实现电话邮件报警

Kylin3.0

· Kylin的安装部署

· Kylin核心思想

· 使用Kylin对接数据源构建模型

Atlas2.0

· 元数据管理工具Atlas的安装部署

Zabbix

· 集群监控工具Zabbix的安装部署

DolphinScheler

· 任务调度工具DolphinScheler的安装部署

· 实现数仓项目任务的自动化调度、配置邮件报警

Superset

· 使用SuperSet对数仓项目的计算结果进行可视化展示

Echarts

· 使用Echarts对数仓项目的计算结果进行可视化展示

Redis

· Redis安装部署

· 五大数据类型

· 总体配置

· 持久化

· 事务

· 发布订阅

· 主从复制

Canal

· 使用Canal实时监控MySQL数据变化采集至实时项目

Flink

· 运行时架构

· 数据源Source

· Window API

· Water Mark

· 状态编程

· CEP复杂事件处理

Flink SQL

· Flink SQL和Table API详细解读

Flink 内核

· Flink内核源码讲解

· 经典面试题讲解

Git&GitHub

· 安装配置

· 本地库搭建

· 基本操作

· 工作流

· 集中式

ClickHouse

· ClickHouse的安装部署

· 读写机制

· 数据类型

· 执行引擎

DataV

· 使用DataV对实时项目需求计算结果进行可视化展示

sugar

· 结合Springboot对接网络sugar实现数据可视化大屏展示

Maxwell

· 使用Maxwell实时监控MySQL数据变化采集至实时项目

ElasticSearch

· ElasticSearch索引基本操作、案例实操

Kibana

· 通过Kibana配置可视化分析

Springboot

· 利用Springboot开发可视化接口程序

❹ 做大数据分析系统Hadoop需要用哪些软件

1、ApacheMesos

代码托管地址:ApacheSVN

Mesos提供了高效、跨分布式应用程序和框架的资源隔离和共享,支持Hadoop、MPI、Hypertable、Spark等。

Mesos是Apache孵化器中的一个开源项目,使用ZooKeeper实现容错复制,使用LinuxContainers来隔离任务,支持多种资源计划分配(内存和CPU)。提供Java、Python和C++APIs来开发新的并行应用程序,提供基于Web的用户界面来提查看集群状态。

2、HadoopYARN

代码托管地址:ApacheSVN

YARN又被称为MapRece2.0,借鉴Mesos,YARN提出了资源隔离解决方案Container,但是目前尚未成熟,仅仅提供Java虚拟机内存的隔离。

对比MapRece1.x,YARN架构在客户端上并未做太大的改变,在调用API及接口上还保持大部分的兼容,然而在YARN中,开发人员使用ResourceManager、ApplicationMaster与NodeManager代替了原框架中核心的JobTracker和TaskTracker。其中ResourceManager是一个中心的服务,负责调度、启动每一个Job所属的ApplicationMaster,另外还监控ApplicationMaster的存在情况;NodeManager负责Container状态的维护,并向RM保持心跳。ApplicationMaster负责一个Job生命周期内的所有工作,类似老的框架中JobTracker。

Hadoop上的实时解决方案

前面我们有说过,在互联网公司中基于业务逻辑需求,企业往往会采用多种计算框架,比如从事搜索业务的公司:网页索引建立用MapRece,自然语言处理用Spark等。

3、ClouderaImpala

代码托管地址:GitHub

Impala是由Cloudera开发,一个开源的MassivelyParallelProcessing(MPP)查询引擎。与Hive相同的元数据、SQL语法、ODBC驱动程序和用户接口(HueBeeswax),可以直接在HDFS或HBase上提供快速、交互式SQL查询。Impala是在Dremel的启发下开发的,第一个版本发布于2012年末。

Impala不再使用缓慢的Hive+MapRece批处理,而是通过与商用并行关系数据库中类似的分布式查询引擎(由QueryPlanner、QueryCoordinator和QueryExecEngine三部分组成),可以直接从HDFS或者HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。

4、Spark

代码托管地址:Apache

Spark是个开源的数据分析集群计算框架,最初由加州大学伯克利分校AMPLab开发,建立于HDFS之上。Spark与Hadoop一样,用于构建大规模、低延时的数据分析应用。Spark采用Scala语言实现,使用Scala作为应用框架。

Spark采用基于内存的分布式数据集,优化了迭代式的工作负载以及交互式查询。与Hadoop不同的是,Spark和Scala紧密集成,Scala像管理本地collective对象那样管理分布式数据集。Spark支持分布式数据集上的迭代式任务,实际上可以在Hadoop文件系统上与Hadoop一起运行(通过YARN、Mesos等实现)。

5、Storm

代码托管地址:GitHub

Storm是一个分布式的、容错的实时计算系统,由BackType开发,后被Twitter捕获。Storm属于流处理平台,多用于实时计算并更新数据库。Storm也可被用于“连续计算”(continuouscomputation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。

Hadoop上的其它解决方案

就像前文说,基于业务对实时的需求,各个实验室发明了Storm、Impala、Spark、Samza等流实时处理工具。而本节我们将分享的是实验室基于性能、兼容性、数据类型研究的开源解决方案,其中包括Shark、Phoenix、ApacheAccumulo、ApacheDrill、ApacheGiraph、ApacheHama、ApacheTez、ApacheAmbari。

6、Shark

代码托管地址:GitHub

Shark,代表了“HiveonSpark”,一个专为Spark打造的大规模数据仓库系统,兼容ApacheHive。无需修改现有的数据或者查询,就可以用100倍的速度执行HiveQL。

Shark支持Hive查询语言、元存储、序列化格式及自定义函数,与现有Hive部署无缝集成,是一个更快、更强大的替代方案。

7、Phoenix

代码托管地址:GitHub

Phoenix是构建在ApacheHBase之上的一个SQL中间层,完全使用Java编写,提供了一个客户端可嵌入的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBasescan,并编排执行以生成标准的JDBC结果集。直接使用HBaseAPI、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。Phoenix完全托管在GitHub之上。

Phoenix值得关注的特性包括:1,嵌入式的JDBC驱动,实现了大部分的java.sql接口,包括元数据API;2,可以通过多个行键或是键/值单元对列进行建模;3,DDL支持;4,版本化的模式仓库;5,DML支持;5,通过客户端的批处理实现的有限的事务支持;6,紧跟ANSISQL标准。

8、ApacheAccumulo

代码托管地址:ApacheSVN

ApacheAccumulo是一个可靠的、可伸缩的、高性能、排序分布式的键值存储解决方案,基于单元访问控制以及可定制的服务器端处理。使用GoogleBigTable设计思路,基于ApacheHadoop、Zookeeper和Thrift构建。Accumulo最早由NSA开发,后被捐献给了Apache基金会。

对比GoogleBigTable,Accumulo主要提升在基于单元的访问及服务器端的编程机制,后一处修改让Accumulo可以在数据处理过程中任意点修改键值对。

9、ApacheDrill

代码托管地址:GitHub

本质上,ApacheDrill是GoogleDremel的开源实现,本质是一个分布式的mpp查询层,支持SQL及一些用于NoSQL和Hadoop数据存储系统上的语言,将有助于Hadoop用户实现更快查询海量数据集的目的。当下Drill还只能算上一个框架,只包含了Drill愿景中的初始功能。

Drill的目的在于支持更广泛的数据源、数据格式及查询语言,可以通过对PB字节数据的快速扫描(大约几秒内)完成相关分析,将是一个专为互动分析大型数据集的分布式系统。

10、ApacheGiraph

代码托管地址:GitHub

ApacheGiraph是一个可伸缩的分布式迭代图处理系统,灵感来自BSP(bulksynchronousparallel)和Google的Pregel,与它们区别于则是是开源、基于Hadoop的架构等。

Giraph处理平台适用于运行大规模的逻辑计算,比如页面排行、共享链接、基于个性化排行等。Giraph专注于社交图计算,被Facebook作为其OpenGraph工具的核心,几分钟内处理数万亿次用户及其行为之间的连接。

11、ApacheHama

代码托管地址:GitHub

ApacheHama是一个建立在Hadoop上基于BSP(BulkSynchronousParallel)的计算框架,模仿了Google的Pregel。用来处理大规模的科学计算,特别是矩阵和图计算。集群环境中的系统架构由BSPMaster/GroomServer(ComputationEngine)、Zookeeper(DistributedLocking)、HDFS/HBase(StorageSystems)这3大块组成。

12、ApacheTez

代码托管地址:GitHub

ApacheTez是基于HadoopYarn之上的DAG(有向无环图,DirectedAcyclicGraph)计算框架。它把Map/Rece过程拆分成若干个子过程,同时可以把多个Map/Rece任务组合成一个较大的DAG任务,减少了Map/Rece之间的文件存储。同时合理组合其子过程,减少任务的运行时间。由Hortonworks开发并提供主要支持。

13、ApacheAmbari

代码托管地址:ApacheSVN

ApacheAmbari是一个供应、管理和监视ApacheHadoop集群的开源框架,它提供一个直观的操作工具和一个健壮的HadoopAPI,可以隐藏复杂的Hadoop操作,使集群操作大大简化,首个版本发布于2012年6月。

ApacheAmbari现在是一个Apache的顶级项目,早在2011年8月,Hortonworks引进Ambari作为ApacheIncubator项目,制定了Hadoop集群极致简单管理的愿景。在两年多的开发社区显着成长,从一个小团队,成长为Hortonworks各种组织的贡献者。Ambari用户群一直在稳步增长,许多机构依靠Ambari在其大型数据中心大规模部署和管理Hadoop集群。

目前ApacheAmbari支持的Hadoop组件包括:HDFS、MapRece、Hive、HCatalog、HBase、ZooKeeper、Oozie、Pig及Sqoop。

❺ 课程开发的三个阶段

‘壹’ FCF右脑开发里面的课程有几个阶段

总共是五个课程,最主要的是它们是环环相扣,一个都不能少,但是课程的含金量是很高的

‘贰’ 尚学堂的java课程主要学习什么呢

第一阶段:小型桌面应用开发
阶段目的:掌握JAVA语言的语法,理解面回向对象的编程思想,能够答熟练使用JAVA语言开发小型桌面应用。
基础技能训练:操作系统与网络技术、JAVA面向功能对象程序设计、JAVA核心编程、JAVA网络编程
第二阶段:中小型网站应用开发
阶段目的:掌握数据库设计与开发技能,熟练使用JAVAEE组件技术开发中小型网站应用。
数据库(Oracle数据库管理及开发)、UI开发(WEB页面开发基础、XML、Ajax)、JAVAEE组件开发(jsp、servlet、jdbc)、框架技术(struts2.0、hibernate、spring、springMVC、mybatis)
第三阶段:软件工程工业实践
阶段目的:熟悉软件工程流程及规范,使用以前三个阶段所学的技能,进行软件工程工业实践。
软件工程方法论、软件工程项目实践
第四阶段:职业素质培养及就业
阶段目的:提高团队协作能力、职业道德、沟通能力和面试技巧,成功面试,成为标准IT职业人。
职业素质培养(职业道德、项目经理座谈、面试技能)、就业。

‘叁’ 安卓开发课程分为哪几个阶段

安卓越的安卓开发课程分为5个阶段,共768课时,第一阶段:android介绍与Java核心部分
(168课时)
第二阶段:Android基础编程
(152课时)
第三阶段:专项技能突破(160课时)第四阶段:高级篇(48课时)Android
OpenGL
开发基础
OpenGL基本知识、OpenGL和OpenGl
ES介绍
掌握OpenGL开发技巧
第五阶段:高级篇(112课时)
Android项目实战
掏客(个人媒体客户端)

‘肆’ 想学习5培训的课程,谁能介绍一下课程的体系

所有互联网的页面开发都可以用到HTML5,包括PC端,手机端和平板。
HTML5高端课程大纲分为十个阶段。
第一阶段:前端页面重构;
第二阶段:JavaScript高级程序设计;
第三阶段:PC端全栈开发;
第四阶段:移动WebApp开发;
第五阶段 : 混合(RN,HybridAPP)开发;
第六阶段:NodeJS开发;
第七阶段:游戏开发;
第八阶段:Java开发;
第九阶段:PHP开发;
第十阶段:Android开发。

‘伍’ 安卓开发课程分为哪几个阶段

安卓越的安卓开发课程分为5个阶段,共768课时,第一阶段:android介绍与Java核心部分 (168课时)
第二阶段:Android基础编程 (152课时) 第三阶段:专项技能突破(160课时)第四阶段:高级篇(48课时)Android OpenGL 开发基础 OpenGL基本知识、OpenGL和OpenGl ES介绍 掌握OpenGL开发技巧
第五阶段:高级篇(112课时) Android项目实战 掏客(个人媒体客户端)

‘陆’ 学习方法内容

高效的学习,首先要学会听课:
1、有准备的去听,也就是说听课前要先预习,找出不懂的知识、发现问题,带着知识点和问题去听课会有解惑的快乐,也更听得进去,容易掌握;
2、参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。
3、听要结合写和思考。纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。
4、如果你因为种种原因,出现了那些似懂非懂、不懂的知识,课上或者课后一定要花时间去弄懂。不然问题只会越积越多,最后就只能等着拥抱那“不三不四”的考试分数了。

其次,要学会记忆:
1、要学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。
2、合理用脑。所谓合理,一是要交替复习不同性质的课程,如文理交叉,历史与地理交叉,这可使大脑皮层的不同部位轮流兴奋与抑制,有利于记忆能力的增强与开发;二是在最佳时间识记,一般应安排在早晨、晚上临睡前,具体根据自己的记忆高峰期来选择。
3、借助高效工具。速读记忆是一种高效的阅读学习方法,其训练原理就在于激活“脑、眼”潜能,培养形成眼脑直映式的阅读学习方式,主要练习提升阅读速度、注意力、记忆力、理解力、思维力等方面。掌握之后,在阅读文章、材料的时候可以快速的提取重点,促进整理归纳分析,提高理解和记忆效率;同时很快的阅读速度,还可以节约大量的时间,游刃有余的做其它事情。具体学习可以参考《精英特全脑速读记忆训练软件》。
学习思维导图,思维导图是一种将放射性思考具体化的方法,也是高效整理,促进理解和记忆的方法。不仅在记忆上可以让你大脑里的资料系统化、图像化,还可以帮助你思维分析问题,统筹规划。不过,要学好思维导图,做到灵活运用可不是一件简单的事,需要花费很多时间的。前面说的“精英特全脑速读记忆训练软件”中也有关于思维导图的练习和方法讲解,可以参考。

最后,要学会总结:
一是要总结考试成绩,通过总结学会正确地看待分数。只有正确看待分数,才不会被分数蒙住你的双眼,而专注于学习的过程,专注于蕴藏在分数背后的秘密。二是要总结考试得失,从中找出成败原因,这是考后总结的中心任务。学习当然贵在努力过程,但分数毕竟是知识和技能水平的象征之一,努力过程是否合理也常常会在分数上体现出来。三是要总结、整理错题,收集错题,做出对应的一些解题思路(不解要知道这题怎么解,还有知道这一类型的题要怎么解)。四是要通过总结,确定下阶段的努力方向。

‘柒’ web课程里面会学习到哪几种框架呢

这里整理了一份系统全面的web前端学习路线,框架的相关内容在第三阶段,希望可以帮到你~

第一阶段:专业核心基础

阶段目标:

1. 熟练掌握HTML5、CSS3、Less、Sass、响应书布局、移动端开发。

2. 熟练运用HTML+CSS特性完成页面布局。

4. 熟练应用CSS3技术,动画、弹性盒模型设计。

5. 熟练完成移动端页面的设计。

6. 熟练运用所学知识仿制任意Web网站。

7. 能综合运用所学知识完成网页设计实战。

知识点:

1、Web前端开发环境,HTML常用标签,表单元素,Table布局,CSS样式表,DIV+CSS布局。熟练运用HTML和CSS样式属性完成页面的布局和美化,能够仿制任意网站的前端页面实现。

2、CSS3选择器、伪类、过渡、变换、动画、字体图标、弹性盒模型、响应式布局、移动端。熟练运用CSS3来开发网页、熟练开发移动端,整理网页开发技巧。

3、预编译css技术:less、sass基础知识、以及插件的运用、BootStrap源码分析。能够熟练使用 less、sass完成项目开发,深入了解BootStrap。

4、使用HTML、CSS、LESS、SASS等技术完成网页项目实战。通过项目掌握第一阶段、css的内容、完成PC端页面设计和移动端页面设计。

第二阶段:Web后台技术

阶段目标:

1. 了解JavaScript的发展历史、掌握Node环境搭建及npm使用。

2. 熟练掌握JavaScript的基本数据类型和变量的概念。

3. 熟练掌握JavaScript中的运算符使用。

4. 深入理解分之结构语句和循环语句。

5. 熟练使用数组来完成各种练习。

6.熟悉es6的语法、熟练掌握JavaScript面向对象编程。

7.DOM和BOM实战练习和H5新特性和协议的学习。

知识点:

1、软件开发流程、算法、变量、数据类型、分之语句、循环语句、数组和函数。熟练运用JavaScript的知识完成各种练习。

2、JavaScript面向对象基础、异常处理机制、常见对象api,js的兼容性、ES6新特性。熟练掌握JavaScript面向对象的开发以及掌握es6中的重要内容。

3、BOM操作和DOM操作。熟练使用BOM的各种对象、熟练操作DOM的对象。

4、h5相关api、canvas、ajax、数据模拟、touch事件、mockjs。熟练使用所学知识来完成网站项目开发。

第三阶段:数据库和框架实战

阶段目标:

1. 综合运用Web前端技术进行页面布局与美化。

2. 综合运用Web前端开发框架进行Web系统开发。

3. 熟练掌握Mysql、Mongodb数据库的发开。

4. 熟练掌握vue.js、webpack、elementui等前端框技术。

5. 熟练运用Node.js开发后台应用程序。

6. 对Restful,Ajax,JSON,开发过程有深入的理解,掌握git的基本技能。

知识点:

1、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,mongodb数据库。深入理解数据库管理系统通用知识及MySQL数据库的使用与管理,为Node.js后台开发打下坚实基础。

2、模块系统,函数,路由,全局对象,文件系统,请求处理,Web模块,Express框架,MySQL数据库处理,RestfulAPI,文件上传等。熟练运用Node.js运行环境和后台开发框架完成Web系统的后台开发。

3、vue的组件、生命周期、路由、组件、前端工程化、webpack、elementui框架。Vue.js框架的基本使用有清晰的理解,能够运用Vue.js完成基础前端开发、熟练运用Vue.js框架的高级功能完成Web前端开发和组件开发,对MVVM模式有深刻理解。

4、需求分析,数据库设计,后台开发,使用vue、node完成pc和移动端整站开发。于Node.js+Vue.js+Webpack+Mysql+Mongodb+Git,实现整站项目完整功能并上线发布。

第四阶段:移动端和微信实战

阶段目标:

1.熟练掌握React.js框架,熟练使用React.js完成开发。

2.掌握移动端开发原理,理解原生开发和混合开发。

3.熟练使用react-native和Flutter框架完成移动端开发。

4.掌握微信小程序以及了解支付宝小程序的开发。

5.完成大型电商项目开发。

知识点:

1、React面向组件编程、表单数据、组件通信、监听、声明周期、路由、Rex基本概念。练使用react完成项目开发、掌握Rex中的异步解决方案Saga。

2、react-native、开发工具、视图与渲染、api操作、Flutter环境搭建、路由、ListView组件、网络请求、打包。练掌握react-native和Flutter框架,并分别使用react-native和Flutter分别能开发移动端项目。

3、微信小程序基本介绍、开发工具、视图与渲染、api操作、支付宝小程序的入门和api学习。掌握微信小程序开发了解支付宝小程序。

4、大型购物网站实战,整个项目前后端分离开发;整个项目分为四部分:PC端网页、移动端APP、小程序、后台管理。团队协作开发,使用git进行版本控制。目期间可以扩展Three.js 、TypeScript。

‘捌’ UI设计都需要学什么

UI设计师技抄能一:熟练设计技巧袭,用户界面设计主要包含图形设计、用户体验设计和应用程序开发几个方面。UI设计师首先需要具备基本的UI设计技巧,既要懂设计,又要懂技术。

UI设计师技能二:UI设计师必须掌握前端开发的知识,包括HTML、CSS和JavaScript,以及Photoshop、图形设计以及代码编写的能力。

UI设计师技能三:设计理念强,UI设计师必须在产品功能和视觉元素间找到平衡,既要满足产品的功能需求,又要尽量美观。

单纯只掌握ps,对于UI设计是不够用的。

(8)课程开发的三个阶段扩展阅读:

UI设计(或称界面设计)是指对软件的人机交互、操作逻辑、界面美观的整体设计。UI设计分为实体UI和虚拟UI,互联网说的UI设计是虚拟UI,UI即User Interface(用户界面)的简称。

好的UI设计不仅是让软件变得有个性有品位,还要让软件的操作变得舒适简单、自由,充分体现软件的定位和特点。

‘玖’ 孩子三岁半了,想给他选择一个幼儿逻辑思维或者是多元智能脑力开发的课程,有哪位吉林市的家长给点建议

这位家长,你好! 孩子的思维发展是分阶段的。如果孩子还没有发展一定的思维阶段,再大量的训练,也不可能得到质的突破。 三岁多的孩子,处于前运算阶段,简单的说就是还没有发育到进行逻辑运算思维能力的阶段。思维特点是认知过于简单和静止。以形象思维和直观反射为主要思考方式,所以应重视孩子的形象思维训练和运动反射训练。多看图画,听音乐,让他讲故事,平时玩玩一些简单投掷,串珠子,跳跃运动就可以了。 这个阶段孩子思维的局限性有下面三个特点: 1自我中心:说话,回答问题时经常喜欢自说自话。看一个玩具时,站在自己的位置,想象不出从另一个位置看它,是什么样子。 2特征扩大:看一个玩具或者人,只记住最大的特征忽视其他特点。 3静止判断:推理,运算时候,往往答案是最后出现的静止的状态和事物。 因为,每个孩子的发展有快有慢,也许你的孩子思维发展比一般的孩子要快,你也可以从简单的日常生活训练孩子的逻辑思维就,比如,教孩子换位思考,完整的看一个图片各个位置,数珠子,看大小,火车跑的快等游戏。 关于多元智能脑力开发或者逻辑思维训练课程,你当地的各大早教机构,情商训练机构都应该有这方面的课程。如何选择?最好的方法是去免费试听!看看老师对孩子的态度,看看教育机构的教学内容,问问参加过家长的口碑等。 给你几个教育领域比较的老师,可以参考他们的教育理念 林格和皇甫军伟——中国养成教育网,养树养根,养人养心。 董进宇——亲子关系,发明了家长可以套用的“教育公式”。 周宏——赏识教育,利用“人人渴望赞美”激发孩子的动力。 王东华——《发现母亲》母亲手里有开发孩子潜能的金钥匙。 尹建莉和孔屏——儿童心理咨询师,发现孩子成长的动力。 雷京魁——亲子关系,开展父母效能培训《父母执照》。 余世维——人才培训,揭示成为未来企业精英的成长规律。 张健柏——今日学堂校长,批判当今中国教育的现状,自办学堂。 杨东平——教育公共政策、教育公平研究者。可敬的“教育愤青” 侯成山——性格分析领域权威,解决家庭婚姻,亲子沟通等困惑。

‘拾’ 大数据培训学校学哪些内容

以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。
一、 第一阶段:静态网页基础(HTML+CSS)
1. 难易程度:一颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等
4. 描述如下:
从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目经理分析,满足这两点,目前市场上最好理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以第一阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。
二、 第二阶段:JavaSE+JavaWeb
1. 难易程度:两颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、 *** 、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式
4. 描述如下:
称为Java基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计
与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度最高的阶段。本阶段将第一次接触团队开发、产出具有前后台(第一阶段技术+第二阶段的技术综合应用)的真实项目。
三、 第三阶段:前端框架
1. 难易程序:两星
2. 课时量(技术知识点+阶段项目任务+综合能力):64课时
3. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
4. 描述如下:
前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。
四、 第四阶段:企业级开发框架
1. 难易程序:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServiceCXF、Tomcat集群和热备、MySQL读写分离
4. 描述如下:
如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。
五、 第五阶段: 初识大数据
1. 难易程度:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapRece应用(中间计算过程、Java操作MapRece、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
4. 描述如下:
该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。
(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)
那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。
六、 第六阶段:大数据数据库
1. 难易程度:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
4. 描述如下:
该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。
怎么简化呢?在第一阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。
总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询
七、 第七阶段:实时数据采集
1. 难易程序:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
4. 描述如下:
前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。
举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别
八、 第八阶段:SPARK数据分析
1. 难易程序:五颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
4. 描述如下:
同样先说前面的阶段,主要是第一阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从北京到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持最好,所以课程中先学习SCALA开发语言。
在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。
比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。

❻ 大数据如何入门

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

大数据

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。


Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。


Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。


Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。


Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。


Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。


Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。


Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。


Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。


Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。


Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

阅读全文

与hadoop属于dml命令的是相关的资料

热点内容
怎么申请邮箱的服务器 浏览:13
c项目两个工程怎么编译 浏览:645
知乎app有什么作用 浏览:451
单片机带的比较器 浏览:391
程序员都是精英 浏览:19
10种编程语言 浏览:749
绵阳学驾驶手机上下什么app 浏览:129
python如何模拟网页操作 浏览:40
单片机多文件编译方法 浏览:839
不动产压缩时间 浏览:571
租房管理平台源码 浏览:65
复乐园pdf 浏览:457
程序员找到公交车 浏览:698
婴儿宝宝操有什么APP推荐 浏览:73
如何将数据库附加到服务器上 浏览:391
php退出循环 浏览:479
梦幻西游怎么修改服务器人数上限 浏览:332
自动开启命令 浏览:847
查询云服务器访问的ip 浏览:838
智能app的弱点是什么 浏览:412